
1

A Multi-branch Decoder Network Approach to
Adaptive Temporal Data Selection and

Reconstruction for Big Scientific Simulation Data
Yang Zhang, IEEE Student Member, Hanqi Guo, IEEE Member, Lanyu Shang, IEEE Student Member,

Dong Wang, IEEE Member and Tom Peterka, IEEE Member

Abstract—A key challenge in scientific simulation is that the simulation outputs often require intensive I/O and storage space to store
the results for effective post hoc analysis. This paper focuses on a quality-aware adaptive temporal data selection and reconstruction
problem where the goal is to adaptively select simulation data samples at certain key timesteps in situ and reconstruct the discarded
samples with quality assurance during post hoc analysis. This problem is motivated by the limitation of current solutions that a
significant amount of simulation data samples are either discarded or aggregated during the sampling process, leading to inaccurate
modeling of the simulated phenomena. Two unique challenges exist: 1) the sampling decisions have to be made in situ and adapted to
the dynamics of the complex scientific simulation data; 2) the reconstruction error must be strictly bounded to meet the application
requirement. To address the above challenges, we develop DeepSample, an error-controlled convolutional neural network framework,
that jointly integrates a set of coherent multi-branch deep decoders to effectively reconstruct the simulation data with rigorous quality
assurance. The results on two real-world scientific simulation applications show that DeepSample significantly outperforms other
state-of-the-art methods on both sampling efficiency and reconstructed simulation data quality.

Index Terms—Big Scientific Simulation Data, Adaptive Temporal Data Selection and Reconstruction, Multi-branch Decoder Network

F

1 INTRODUCTION

W ITH the unprecedented computational power of
supercomputers and advanced simulation model-

ing techniques, scientific simulation is a pivotal research
paradigm to study the complex physical phenomena across
engineering and scientific disciplines [1]. Examples of such
applications include the air pollution simulation for green-
house gas emission modeling [2], high energy cosmic ray
simulation for cosmology studies [3], and fluid dynamics
simulation for cardiovascular medicine research [4]. A key
challenge in scientific simulation is that the outputs of the
simulation experiments are often time-varying and high-
dimensional data with high-velocity and large-volume [5],
which require extensive resources (e.g., I/O bandwidth and
storage space) to store sufficient timesteps for accurate post
hoc analysis [6]. For example, in a high-fidelity climate
simulation, an average of 260 TB time-varying 3D simu-
lation data is generated by the simulation model every
16 seconds [7]. As a result, the climate simulation model
requires an average of 16.25 TB/s I/O speed to support this
application. However, the peak output rate for the current
parallel file system in high-performance computing (HPC)

• Y. Zhang is with the Department of Computer Science and Engineering,
University of Notre Dame, Notre Dame, IN, USA, 46556.
E-mail: yzhang42@nd.edu

• L. Shang, and D. Wang are with the School of Information Sciences,
University of Illinois Urbana-Champaign, Champaign, Champaign, IL,
USA, 61820.
E-mail: lshang3@illinois.edu, dwang24@illinois.edu

• H. Guo and T. Peterka are with the Mathematics and Computer Science
Division, Argonne National Laboratory, Lemont, IL, USA, 60439.
E-mail: hguo@anl.gov, tpeterka@mcs.anl.gov

• Corresponding author: D. Wang (dwang24@illinois.edu)

systems is only 2.5 TB/s [8]. Therefore, such a large gap
between the intensive data requirement from scientific sim-
ulations and the I/O bottleneck of the current HPC systems
presents a critical challenge for the big data community.

Previous efforts have been made to address the I/O
and storage bottleneck in scientific simulations. Common
practices include uniform sampling and averaging [9], strat-
ified random sampling [10], content-aware adaptive sam-
pling [11], and bitmap indexing [12]. However, a key limi-
tation of these solutions is that a significant amount of sim-
ulation timesteps are either discarded or aggregated during
the sampling process, which could hinder the scientists from
building accurate models for the studied phenomena in the
post hoc analysis [13]. There also exist some recent efforts in
lossy compression that compress the data sample at each
timestep to reduce the I/O overhead [5], [14]. However,
those solutions mainly focus on reducing the data size at
the spatial dimension and miss the opportunity to reduce
the data size in the temporal dimension. As a result, they
could be insufficient to meet the I/O requirements of the
long-term and large-scale scientific simulation applications.

In this paper, we study the in situ quality-aware adaptive
temporal data selection problem in scientific simulations. In
particular, our problem aims to adaptively select samples
from the streaming simulation data at certain timesteps (i.e.,
key timesteps) in situ and reconstruct the discarded samples
during post hoc analysis to meet certain quality require-
ments (e.g., quality bounds) of the application. The key
timesteps need to be a small fraction of the total timesteps
in the simulation process to reduce the requirements on I/O
bandwidth and storage space. Meanwhile, the reconstructed
data quality from the selected data samples has to ensure the

2

expected post hoc analysis performance of the simulated
scientific applications [14]. Two unique challenges exist in
solving the quality-aware adaptive temporal data selection
problem, which are elaborated as follows.

In situ Adaptive Sampling for Complex Simulation Data: The
scientific simulation data are known to be high-dimensional
and large-volume with nonlinear and complex temporal
correlations [5]. The key question here is: how can we
identify the key timesteps for sampling in situ to achieve the
objective of maximizing the number of discarded samples
while ensuring the reconstructed data quality? The current
solutions in scientific simulations often require the access
to a large volume of data samples to learn the complex
temporal correlations to address the above question [15],
[16]. However, those approaches introduce a non-trivial I/O
and storage overhead which is not affordable for the big
data scientific simulations we studied in this paper. The
adaptive sampling technique for streaming data process-
ing could be applied to address the above challenge [17],
[18]. However, such a technique is often designed for spe-
cific signal and data processing tasks (e.g., streaming data
summarization, entropy-driven checkpoint detection) and
is difficult to be adapted to the high-dimensional massive
simulation data samples. Therefore, an in situ adaptive data
selection scheme that can effectively sample and reconstruct
the complex streaming simulation data is yet to be devel-
oped.

Error-controlled Non-uniform Data Reconstruction: The sec-
ond challenge lies in ensuring an error-controlled data re-
construction from the data samples that are adaptively (non-
uniformly) sampled at the key timesteps. Such an error-
controlled data reconstruction is essential for the accurate
modeling in post hoc analysis [19]. However, two important
limitations exist in the current solutions to address such
a challenge. First, current data reconstruction solutions in
scientific simulations primarily focus on optimizing the
reconstructed data quality without a rigorous guarantee
(e.g., performance bounds) on the reconstructed data qual-
ity [13], [20]. Second, current solutions in temporal scientific
simulation data reconstruction are mainly designed based
on the assumption that the simulation data is uniformly
sampled [21]. This is because those solutions require a fixed
sampling window to determine the structure of the neural
networks before the network optimization process [22].
Such a limitation makes those approaches incapable of
recovering the simulation data sequence using samples
from the non-uniformly distributed key timesteps that are
critical to accommodate the dynamics and provide quality
assurance for the reconstructed data.

To address the above challenges, we develop DeepSample,
an error-controlled deep data sampling and reconstruction
scheme to solve the in situ quality-aware adaptive temporal
data selection problem in scientific simulations. In particu-
lar, we develop a quality-aware data sampling framework
that makes online sampling decisions to adaptively select
data samples from the key timesteps by leveraging the esti-
mated data reconstruction quality from a novel deep estima-
tion network. Furthermore, we develop an error-controlled
convolutional neural network architecture that integrates a
set of coherent multi-branch deep decoders to effectively
reconstruct the discarded data samples with rigorous data

quality bounds. To the best of our knowledge, DeepSample
is the first error-controlled deep learning approach to solve
the adaptive temporal data sampling and reconstruction
problem with quality assurance in scientific simulations.
We evaluate DeepSample through two real-world scien-
tific simulation applications (i.e., Shear Boundary Layer
and Shallow Cumulus Convection). The evaluation results
show that our DeepSample consistently outperforms the
state-of-the-art baselines by simultaneously achieving better
sampling efficiency and reconstructed data quality under
various application scenarios.

2 RELATED WORK

2.1 Scientific Simulation Data Management
Driven by the advent of recent high-performance computing
and simulation modeling techniques, scientific simulation
has been established as a powerful and scalable paradigm to
study the complex real-world phenomena in many scientific
and engineering disciplines [1]. Our paper focuses on the
effective simulation data management and analysis in large-
scale scientific simulations [23]. Examples of those applica-
tions include flexible I/O design for heterogeneous runtime
platforms [24], fast lossy compression and recovery of high
throughput simulations [25], and in situ visualization of
ultra-scale scientific simulations [9]. Several key challenges
exist in these applications. Examples include high data
velocity and dimensionality, model portability, and system
scalability [26]. However, the quality-aware adaptive data
selection problem remains to be an open problem in scien-
tific simulation data management and analysis. In this pa-
per, we develop a novel error-controlled deep data sampling
and reconstruction framework to address this problem by
adaptively sampling the simulation data at key timesteps
to effectively reduce the I/O and storage overhead while
ensuring the desirable reconstructed data quality.

2.2 Data Sampling and Reconstruction for Scientific
Simulations
Previous efforts have been made to address the data sam-
pling and reconstruction problem in scientific simulation
applications [5], [13], [14], [15], [16], [20]. Examples of those
solutions include uniform data sampling and reconstruc-
tion [13], [20], adaptive key step selection [15], [16], and
lossy compression [5], [14]. For example, Han et al. de-
veloped a 3D deep temporal super-resolution approach to
reconstruct the time-varying simulation data sequence from
the uniform samples using recurrent neural networks [13].
Zhou et al. proposed a deep data reconstruction framework
to preserve the structural integrity of the simulation outputs
during the data reconstruction process using convolution
neural networks [20]. However, those data reconstruction
approaches can not be adopted to work with the non-
uniform samples that are essential to provide quality assur-
ance of the reconstructed data [22]. On the other hand, there
exist several efforts on adaptive key timestep selection in
scientific simulations [15], [16]. For example, Tong et al. pro-
posed a dynamical temporal sample framework to retrieve
the most salient timesteps from large-scale time-varying
simulation datasets using dynamic time warping [15]. How-
ever, those adaptive sampling approaches require to access

3

all simulation data to effectively identify the key timesteps
and introduce a non-trivial I/O and storage overhead. There
also exist a couple of recent efforts in lossy compression
that are designed to reduce the simulation data size at
each timestep to reduce the I/O overhead [5], [14]. How-
ever, those lossy compression approaches mainly focus on
reducing the data size at the spatial dimension but miss
the opportunity to reduce the data size in the temporal
dimension. As a result, they could be insufficient to reduce
the I/O overhead for the long-term and large-scale scientific
simulations. In contrast, our paper focuses on adaptively
selecting a small fraction of samples from the streaming
simulation data in situ and effectively reconstructing the
discarded samples during post hoc analysis to meet the data
quality requirements of the application.

2.3 Deep Learning for Scientific Simulation Data
Our work is also related to the growing trend of utilizing
deep learning techniques in scientific simulation data man-
agement and analysis including particle tracing, streaming
lines clustering, noise reduction, and parameter space ex-
ploration [6], [27], [28], [29]. For example, Han et al. pro-
posed a deep clustering approach to select the streamlines
and stream surfaces for effective flow visualization using
decoder-encoder architectures [27]. Hong et al. developed
an access pattern estimation scheme to trace the parallel
particle in flow field using long short-term memory net-
works [28]. Kim et al. designed a reference frame extraction
framework to reduce the noise and artifacts in unsteady
vector fields using convolutional neural networks [29]. He
et al. developed a deep image synthesis approach to ex-
plore the parameter space for simulation data generation
using generative adversarial networks [6]. To the best of
our knowledge, DeepSample is the first error-controlled
multi-branch deep decoder network approach to solve the
adaptive data sampling and reconstruction problem with
quality assurance in scientific simulations.

3 PROBLEM DEFINITION

In this section, we formally define the quality-aware adap-
tive temporal data selection problem in scientific simula-
tions.
Definition 1. Simulation Data (D): We define D =
{D1,D2, ...,DT } to represent the simulation data (e.g.,
3D volume data of weather simulations) generated by a
scientific simulation model, whereDt indicates the simu-
lation data generated at timestep t. T is the total number
of timesteps in the scientific simulation application.

Definition 2. Selected Set (S): We define S to represent the
set of simulation data selected from the entire simula-
tion data sequence D, which is used to reconstruct the
discarded simulation data samples during the post hoc
analysis. In particular, we define S = {DS1 ,DS2 , ...,DSI }.
I is the total number of simulation data samples in S .
Mathematically, we have:

S ⊂ D, where I < T (1)

Definition 3. Discarded Set (X): We defined X to represent
the simulation data discarded during the in situ selection

process. In particular, we define X = {DX1 ,DX2 , ...,DXJ }.
J is the number of discarded data samples in X . Mathe-
matically, we have:

D = X ∪ S , where T = I + J (2)

Definition 4. Reconstructed Set (X̂): We define X̂ to repre-
sent the reconstructed simulation data for all simulation
data discarded in the discarded set X . In particular, we
define X̂ = {D̂X1 , D̂X2 , ..., D̂XJ }, where D̂Xj indicates the
reconstructed simulation data for DXj . Note that the size
of the reconstructed set X̂ is the same as the size of the
discarded set X .

Definition 5. Reconstruction Quality Bound (θ): We define
θ to represent the reconstruction quality bound for a spe-
cific scientific simulation application (e.g., a predefined
peak signal-to-noise ratio (PSNR) or structural similarity
index measure (SSIM) [30] threshold that meets the spe-
cific application requirement for the post hoc analysis).
Our goal is to ensure the reconstructed data quality
strictly meets the reconstruction quality bound θ during
the data reconstruction process.

Definition 6. Discard Ratio (α): We define α to represent
the ratio for the number of simulation data samples in
the discarded set X over the number of simulation data
samples at all time steps D as follows:

α =
|X |
|D|

=
J

T
(3)

Given the above definitions, the goal of our adaptive
temporal data selection problem is to dynamically select
a subset of simulation data samples which can be used to
effectively reconstruct the discarded samples that meet the
reconstruction quality bound. Using the above definitions,
our problem is formally defined as:

argmax
S

(α|D, θ), while F(X̂ ,X) ≥ θ

where S ⊂ D and |S| < |D|
(4)

where F is the function to evaluate the quality of the
reconstructed simulation data (e.g., PSNR and SSIM). This
problem is challenging considering that the adaptive data
selection decisions have to be made in situ given the com-
plex high-dimensional, large-volume and time-varying sci-
entific simulation data and the strict reconstruction quality
bound requirement to the reconstructed simulation data
quality. In this paper, we develop the DeepSample scheme
to address these challenges, which is elaborated next.

4 SOLUTION

In this section, we present the DeepSample framework to
address the quality-aware adaptive temporal data selec-
tion problem in scientific simulation applications. We first
present an overview of the framework and then discuss
its components in detail. In the end, we summarize the
DeepSample framework in pseudocode.

4

4.1 Overview of DeepSample Framework

DeepSample is an error-controlled multi-branch convolu-
tional neural network framework to adaptively identify the
key timesteps in scientific simulation outputs that can be
used to effectively reconstruct the discarded data samples
with desirable quality assurance. An overview of DeepSam-
ple is shown in Figure 1. It consists of two major modules:

• Error-Controlled Adaptive Sampling (ECAS): it designs
an error-controlled adaptive sampling mechanism
that performs in situ data sampling to dynamically
select the simulation data on demand to meet the re-
construction quality requirement of the application.

• Multi-Branch Deep Data Reconstruction (MDDR): it
develops a multi-branch deep convolutional neural
network architecture to effectively reconstruct the
discarded data samples during post hoc analysis
through a novel one-to-many deep encoder-decoder
design.

Figure 1. Overview of the DeepSample Framework

4.2 Error-Controlled Adaptive Sampling

In this subsection, we present the ECAS module in Deep-
Sample to adaptively select the data samples in order to
meet the expected reconstruction quality bound specified
by the application. We first start with a few key definitions
that will be used in our ECAS module.

Figure 2. Illustrations of the Key Sampling Concepts

In particular, the ECAS module aims to adaptively
identify the sampling window (i.e., a series of data sam-
ples between two consecutive data selection operations
(see Figure 2)), where ECAS only selects the data sam-
ples at the starting timestep of each sampling window
(i.e., Dm) into the selected set S (Definition 2) and dis-
cards all data samples at the intermediate steps (i.e.,
{Dm+1,Dm+2...,Dm+n}) to reduce I/O bandwidth and

storage overhead. At the post hoc stage, DeepSample re-
constructs {Dm+1,Dm+2...,Dm+n} using Dm and Dm+n+1

from the starting timesteps of two consecutive sampling
windows. In particular, our adaptive sampling scheme
makes the sampling decision by maximizing the number of
discarded samples in the intermediate timesteps (i.e., mini-
mizing the I/O bandwidth and storage overhead) under the
reconstruction quality bounds for each sampling window.
We will provide details on how to dynamically identify the
sampling window in the rest of this subsection. Please also
note that the data samples at the first and last timesteps of
a simulation application are selected into the selected set S
by default.
Definition 7. Selected Data Sample (SS): We define SS

to represent the data sample selected at the sampling
timestep in a sampling window (e.g., Dm).

Definition 8. Consecutively Selected Data Samples (CS):
We define CS to represent a pair of consecutively se-
lected data samples (e.g., both Dm and Dm+n+1).

Definition 9. Discarded Data Samples (DSn) : We define
DSn to represent the n data samples between two con-
secutive data sampling timesteps that are discarded dur-
ing the sampling process (e.g., {Dm+1,Dm+2...,Dm+n})
We further define a temporal data reconstruction func-

tion as follows:
Definition 10. Temporal Data Reconstruction Function (R):

We define R to be a temporal data reconstruction func-
tion that reconstructs the discarded data samples at n
intermediate timesteps using the selected data samples
from two consecutive sampling timesteps as follows:

D̂Sn = {D̂m+1, D̂m+2..., D̂m+n} = R(Dm,Dm+n+1)
(5)

where D̂Sn represents the reconstructed data samples at
the intermediate timesteps. For example, D̂m+1 indicates
the reconstructed sample at timestep m + 1. We will
discuss the detailed design of R that maximizes the
reconstructed data quality in the next subsection.

With D̂Sn, we can compute the reconstructed data qual-
ity as follows:

F(D̂Sn, DSn) (6)

where F represents the quality metric (e.g., PSNR,
SSIM). If the reconstructed data quality F(D̂Sn, DSn)
meets the quality bound θ (defined in Definition 5), i.e.,
F(D̂Sn, DSn) ≥ θ, the ECAS module only needs to save
the data samples at the sampling timesteps and discard all
the samples at the intermediate timesteps to save the I/O
bandwidth and storage space. In particular, our adaptive
sampling scheme makes the sampling decision by maximiz-
ing the number of discarded samples in the intermediate
timesteps (i.e., n) to meet the reconstruction quality bounds:

argmax
Dm,Dm+n+1

(n|F(R(Dm,Dm+n+1), DS
n) > θ)

add Dm,Dm+n+1 to S
discard {Dm+1,Dm+2, ...,Dm+n}

(7)

where S is the sampled set during the adaptive sampling
process (Definition 2). We observe that the discard ratio

5

of our scheme depends heavily on the temporal data re-
construction function R. For example, if R can accurately
reconstruct the discarded data samples even when n is large,
our scheme can achieve a high discard ratio. In addition,
R should also be able to work with sampling windows of
varying sizes in order to support the adaptive sampling de-
cisions. We elaborate the design details of such an effective
temporal data reconstruction function R below.

4.3 Multi-Branch Deep Data Reconstruction

In this section, we present the detailed design of the tem-
poral data reconstruction function R we introduced in the
ECAS module. In particular, we design a multi-branch deep
reconstruction network in DeepSample to effectively recon-
struct all discarded data samples. Our MDDR design aims to
address a key limitation of the current deep temporal data
reconstruction solutions in scientific simulations: they can
only reconstruct simulation data when the data is uniformly
sampled (i.e., the length of the sampling window is fixed).
This is because those solutions require the fixed size of
the sampling window to determine the structure of the
neural networks before the network optimization process.
In particular, the learned weights in the optimized network
instances become invalid if the size of the sampling window
changes after the network optimization process. Such a
limitation makes those approaches incapable of dynamically
maximizing the number of discarded data samples (i.e., n) to
effectively reduce the I/O bandwidth and storage overhead.

Our MDDR module is designed to address the above
limitation. In particular, the MDDR consists of two types
of neural networks: an extraction network (EN) and a set
of reconstruction networks (RN). The overall architecture
of the multi-branch network design is shown in Figure 3.
In our MDDR module, the extraction network EN and the
reconstruction network RNs work collaboratively to learn
a deep data reconstruction model that can concurrently
reconstruct the discarded intermediate data samples given
different sizes of sampling windows. In particular, the EN
first extracts both high-level (e.g., objects and patterns)
and low-level (e.g., colors and textures) visual features
from the simulation data samples at two consecutive sam-
pling timesteps. The EN captures the complex non-linear
temporal evolution in the simulation data sequence. Then
each RNn explicitly fuses the visual features and temporal
evolution extracted by EN to reconstruct the discarded
data samples from sampling windows with different sizes
(e.g., RNn reconstructs the discarded data samples for n
intermediate timesteps). To the best of our knowledge, the
MDDR is the first multi-branch deep reconstruction archi-
tecture that introduces a novel one-to-many deep encoder-
decoder design to simultaneously reconstruct the discarded
data samples with time varying sampling window sizes.
We first formally define the extraction network EN and the
reconstruction network RN as follows:

Definition 11. Extraction Network (EN): We define EN as a
mapping network to extract visual features (e.g., objects
and patterns, color and texture distributions) from the
simulation data at two consecutive sampling timesteps

Figure 3. Overview of One-to-Many Network Design

and capture the complex temporal evolution and non-
linear dynamics in the data sequences as follows:

V CS = EN(CS) (8)

where V CS is used to represent the extracted visual
features and temporal evolution from the selected data
samples at the consecutive sampling timesteps.

We present the detailed layer-wise architecture design
of EN in the (A) of Figure 4. It contains a stack of con-
volutional layers connected with a set of residual blocks
that provide sufficient network depth to extract the visual
features and capture the complex evolution of the simula-
tion data from the consecutively selected data samples. In
addition, we also design a set of loss functions to ensure
that the EN is capable of accurately capturing the visual
features and complex evolution. We also enable the skip
connection to the extraction network (i.e., the dotted lines
in Figure 4), which is designed to forward different levels
of visual features (e.g., high-level visual features including
objects and patterns, and low-level features including colors
and textures) extracted by EN to RN . The different levels
of visual features then can be utilized by RN to reconstruct
the discarded data samples at the intermediate timesteps.
Definition 12. Reconstruction Network (RN): We define

RNn as a reconstruction network that reconstructs the
discarded data at intermediate timesteps using the visual
features V CS extracted by EN :

D̂Sn = RNn(V
CS) (9)

where D̂Sn is the reconstructed data samples for n
intermediate timesteps.

We present the detailed layer-wise architecture design
of RN in (B) of Figure 4. In particular, the reconstruc-
tion network consists of a set of deconvolution layers that
reconstruct the simulation data by gradually adding the
fine-grained visual features at different levels to the re-
constructed data samples. In addition, RN also includes a
set of convolution layers that fuse different levels of visual
features extracted by EN through skip-connections. This is
done to ensure all levels of visual features are successfully
preserved in the reconstructed data samples at all interme-
diate timesteps.

Our next question is how to learn the optimal instances
of all networks in DeepSample to jointly maximize the
reconstructed data quality with the dynamic sampling win-
dow. To address this question, we define the reconstruction
loss LEN,RNn

rec for EN with RNn as follows:

LEN,RNn
rec : Lvoxel(DS

n, RNn(EN(CS))) (10)

6

Channel indicates the number of dimensions representing the visual information embedded at each voxel (e.g., a channel represents the vertical
thermodynamic structure of the atmosphere). Resolution indicates the spatial size of the matrix that represents the visual information preserved
in each neural work layer.

Figure 4. Overall Network Architecture of MDDR

where CS represents the selected data samples at two
consecutive sampling timesteps. Lvoxel indicates the voxel-
wise mean square error (MSE) loss [31] that measures the
voxel-wise value differences between the original and recon-
structed simulation data samples. Intuitively, LEN,RNn

rec is
designed to ensure the stable performance of EN and RNn

in reconstructing the high quality discarded data samples.
Finally, we combine the reconstruction loss functions for all
reconstruction networks to derive the final loss LEN,RN

final for
the MDDR module as follows:

LEN,RN
final :

N∑
n=1

Lvoxel(DS
n, RNn(EN(CS))) (11)

where N indicates the number of reconstruction networks
in the MDDR module. Ideally, N is set to be the size of
the whole simulation data to cover discarded data sam-
ples with all possible sizes. However, it is infeasible to
maintain such a large number of reconstruction networks
in practice. Therefore, the end users of our model need to
set the maximum number of reconstruction networks (i.e.,
N) based on the available memory space to maintain the
MDDR network [32]. In practice, we recommend setting a
larger N if the memory space permits, since it allows more
data samples to be potentially discarded in each sampling
window and could potentially lead to a higher discarded
ratio. We also add a parameter study in Section 5.3.6 to study
the performance of our DeepSample scheme by varying the
number of reconstruction networks.

Using the above loss function, we can learn the optimal
instances (i.e., EN∗, RN∗n) of all networks using the Adap-
tive Moment Estimation (ADAM) optimizer [33]. Finally, we
use EN∗ and RN∗n to reconstruct the data samples with the
dynamic sampling windows as follows:

D̂Sn = RN∗n(EN
∗(CS)) (12)

Our MDDR design guarantees the reconstruction quality
bound θ through an iterative quality assurance process
during the in situ sampling stage. In particular, we use every
reconstruction branch of the pre-trained network instances

(EN∗, RN∗n) to examine the reconstruction data quality
in order to make a sampling decision (i.e., a data sample
is selected or discarded). In the best-case scenario, the re-
construction network RN∗n with the longest reconstruction
timestep interval from all reconstruction networks in MDDR
(i.e., RN∗n with the largest n) can reconstruct intermediate
timesteps while meeting the designated quality bound θ. In
the worst-case scenario where none of the reconstruction
network outputs meets the quality bound θ, our scheme
does not discard any timesteps. In such a case, our scheme
does not need to reconstruct any discarded data, thus the
quality bound θ is still satisfied. In all cases, the quality
bound is guaranteed when we reconstruct the discarded
data samples using the same network instances (EN∗,
RN∗n) during the post hoc reconstruction stage as the ones
we used to examine the reconstruction quality during the in
situ sampling stage.

4.4 Summary of DeepSample Framework

Finally, we further summarize the detailed execution steps
of DeepSample in Algorithm 1. In particular, DeepSample
includes three main phases in performing the in situ adap-
tive temporal data sampling and reconstruction as follows:

Model training phase: The objective is to train an op-
timized multi-branch deep data reconstruction network
(EN∗ and RN∗n) in MDDR that will be used for both in situ
sampling and post hoc reconstruction. Following the deep
model training procedure of scientific data [6], the training
data can be obtained from a pre-run of the simulation model
with different simulation parameter settings.

In situ sampling phase: Given the learned optimized EN∗

and RN∗n , our next objective is to adaptively identify the se-
lected set S from the simulation outputsD. In particular, the
EN∗ and RN∗n are used as the temporal data reconstruction
function (Definition 10) in the ECAS module for adaptive
sampling decisions. Note that our DeepSample does not
involve any network training during the sampling phase.
Instead, it utilizes the learned network instances (EN∗ and
RN∗n) learned from the model training phase to make the

7

real-time sampling decision, where the sampling decision
only requires constant time at each timestep given a specific
scientific simulation application [34]. In addition, the time
complexity of the sample decision at each timestep only
grows linearly with respect to the size of input simulation
data samples for different scientific simulation applications.
This is because we will only need to utilize the learned net-
work instances as the temporal data reconstruction function
to check the reconstructed data quality at each time step [35].

Post hoc reconstruction phase: Given the identified selected
set S, our objective in the post hoc reconstruction phase is to
effectively reconstruct the discarded data samples X̂ , where
the EN∗ and RN∗n use the sampled set to reconstruct the
discarded data samples to meet the quality requirements
from the application.

In practice, our model is pre-trained with archived sim-
ulation outputs (referred to as pre-run data). The pre-trained
model is then applied to the simulation data that share
similar basic characteristics with the pre-run data. For a
domain scientist, the niche application of our method is to
reduce output data in ensemble simulations, which play a vital
role in many engineering and scientific disciplines including
weather research, fluid dynamics, and cosmology [1]. In par-
ticular, ensemble simulations require generating simulation
data from the same simulation with different physical pa-
rameter variations [6]. In this case, our model only needs to
be trained with the pre-run data generated by the simulation
(e.g., weather simulations) using a single set of parameter
settings. The pre-trained model can enable intelligent data-
reduction towards the data generated by the same simu-
lation with many different physical parameter variations.
Note that one should not expect a high discarded ratio for
different types of simulations such as fluid dynamics or
cosmology using the model for weather simulations because
data characteristics are much different [36]. In addition,
our model can also be applied by training with the data
generated at the beginning of the simulation. For example,
our model could be applied to enable intelligent data-
reduction in the simulations that exhibit periodical physical
behaviors (e.g., surface vortex generation and diminishing)
where we can train our model in the first few periods of
the simulation and apply it to the following periods. On
the other hand, we also note that the adaptive sampling
performance of our scheme might not be optimized if
the physical behavior of the studied simulation changes
dramatically after the beginning stage. This is because the
model learned at the beginning could be overfitted to the
simulation data generated later with significantly different
physical behaviors. A potential solution to address this issue
is to periodically retrain our model offline using newly
generated data to learn the changed physical behaviors. We
then replace the old model with the retrained one once the
retaining process is done to ensure the desirable adaptive
sampling performance.

5 EVALUATION

In this section, we conduct extensive experiments using
the simulation data collected from two real-world scientific
simulation applications to address the questions below:

Algorithm 1 DeepSample Framework Summary
. model training phase

1: initialize EN (Definition 11)
2: initialize all RNn (Definition 12)
3: for each epoch do
4: for each batch do
5: optimize EN and all RNn (Equation (11))
6: end for
7: end for
8: obtain EN∗ and all RN∗

n
. in situ sampling phase

9: set EN∗ and all RN∗
n as R (Definition 10)

10: for t from 1 to T do
11: identify SS from D (Equation (7))
12: add SS to S
13: discard DS
14: end for
15: output S

. post hoc reconstruction phase
16: for all CS in S do
17: reconstruct D̂S from CS using EN∗ and all RN∗

n (Equation (12))
18: add D̂S to X̂
19: end for
20: output X̂

• Q1: Can DeepSample outperform the state-of-the-art
baselines in terms of reconstructed data quality?

• Q2: How does DeepSample perform on the discard
ratio compared to the baselines?

• Q3: Can DeepSample meet the quality bounds of the
application with a high discard ratio?

• Q4: Can DeepSample help the spatial data reduction
tools (e.g., lossy compressors) to further improve
their performance?

• Q5: How does each component of DeepSample de-
sign contribute to its overall performance?

• Q6: How do the different choices of model param-
eters (e.g., the number of reconstruction networks)
affect the performance of DeepSample?

5.1 Dataset

We evaluate DeepSample using the publicly available sim-
ulation platform provided by CM1 1 to generate the sim-
ulation datasets from two real-world scientific simulation
applications: Shear Boundary Layer and Shallow Cumulus
Clouds. We choose these two simulation applications be-
cause they provide the high-dimensional, non-linear, and
time-varying simulation outputs that create challenging
evaluation scenarios for our DeepSample scheme. In par-
ticular, we show the dynamic evolving characteristics of the
evaluation datasets by plotting the mean absolute difference
for the data samples between two consecutive timesteps in
Figure 5. We summarize the datasets as follows:

Shear Boundary Layer: Shear Boundary Layer is an impor-
tant computational fluid dynamic simulation application,
which studies the complex physical phenomenon of fluid
in the immediate vicinity of a bounding surface with sig-
nificant viscosity effects [37]. We focus on the complex flow
velocity (i.e., three components of flow velocity along x, y,
z-axis) of the boundary layers generated in this simulation.
The simulation data sample at each timestep is in a dimen-
sion of 96× 96× 96× 3.

1. https://www2.mmm.ucar.edu/people/bryan/cm1/

8

Shallow Cumulus Convection: Shallow cumulus convec-
tion is a critical atmosphere physics simulation application,
which studies the vertical thermodynamic structure of the
atmosphere [38]. We focus on the convection in the vertical
direction in this study. The simulation data sample at each
timestep is in a dimension of 64× 64× 64× 1.

In our experiments, we use 100 data samples from an
ensemble run as the training data and use additional 500
data samples from a different ensemble run as the testing
data for both datasets. In particular, we observe both simu-
lated applications exhibit periodical physical behaviors (e.g.,
surface vortex generation and diminishing) over time. We
test the model with a 500-timestep interval, which covers
a sufficient number of periods on both datasets to obtain
reliable results for evaluation.

Figure 5. Mean Absolute Difference for Data Samples between Two
Consecutive Timesteps

5.2 Baselines and Metrics

• Lerp [39]: a widely used conventional data recon-
struction scheme that utilizes linear interpolation
to reconstruct discarded data samples with varying
sizes. In particular, we use Lerp to replace the MDDR
module as the temporal data reconstruction function
in our ECAS module, which allows Lerp to make
adaptive sampling decisions to meet the correspond-
ing reconstruction quality bounds.

• UNet [40]: a recent deep neural network architecture
that utilizes the contracting paths to learn multi-level
temporal dynamics from the dataset to reconstruct
the discarded samples. Following the standard UNet
architecture, the UNet baseline includes an encoder
for deep feature extraction and a decoder for data
reconstruction. The encoder and decoder are also
connected by three additional skip-connections. In
addition, we follow [22] to extend UNet so that it can
reconstruct the discarded data samples with varying
sizes. In particular, we interpolate deep features ex-
tracted by the encoder from consecutively selected
data samples to generate deep features for each
discarded data sample from intermediate timesteps.
We then forward the generated deep features to the
decoder to reconstruct the discarded data samples
with varying sizes. Similar to Lerp, we also use the
UNet as the temporal data reconstruction function in

our ECAS module to provide adaptive data sampling
and reconstruction.

• FCNN [41]: a deep linear embedding model that
utilizes the fully convolutional neural networks
(FCNN) to map the simulation data into a latent
deep feature space to interpolate the data samples at
the intermediate timesteps. Similar to UNet, we also
extend FCNN to enable error-controlled adaptive
data sampling and reconstruction.

• RNN [42]: a representative deep learning baseline
that utilizes long short-term memory (LSTM) net-
works to learn the dense spatial-temporal functions
and recover the discarded data samples. It includes
a convolutional layer for feature extraction from the
selected data samples, a CovLSTM layer to learn the
complex temporal evolution for the discarded data
samples, and a convolutional layer for the final data
reconstruction. The RNN baseline is designed to be
coupled with the uniform sampling scheme to re-
construct the discarded data samples from uniformly
sampled data samples.

• TSR-TVD [13]: a deep temporal super-resolution ap-
proach that reconstructs the time-varying simulation
data sequence from the uniform samples using re-
current and convolutions neural networks. In par-
ticular, we follow the same network architecture as
described in [13]. Similar to RNN, TSR-TVD is also
designed to be coupled with the uniform sampling
scheme for data sampling and reconstruction.

In our experiment, we adopt two representative eval-
uation metrics that are widely used to evaluate the re-
constructed data quality in scientific simulations: Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity Index
(SSIM) [30]. In addition, we use the discard ratio (Defini-
tion 6) to evaluate the effectiveness of compared schemes
in terms of reducing the I/O and storage overheads. In our
experiment, all compared schemes are implemented using
Pytorch (Version 1.1.0) 2 libraries and trained on the NVIDIA
V100 GPUs. In our experiment, all hyper-parameters are
optimized using the Adam optimizer [33]. In particular, we
set the learning rate to be 10−4 and set the batch size to be 1.
We also set the number of reconstruction networks N in our
MDDR module to be 10. All compared schemes are trained
over 500 epochs.

5.3 Evaluation Results
5.3.1 Q1: Data Reconstruction Quality
We first evaluate the multi-branch deep data reconstruction
(MDDR) network design in our DeepSample model in terms
of the data reconstruction quality. For a fair comparison,
we keep the discard ratio of all schemes to be the same
by fixing their sampling windows as 10. This ensures all
compared schemes take the same amount of data samples in
the reconstruction process. The evaluation results are shown
in Figure 6 and Figure 7. We observe that DeepSample
consistently outperforms all compared baselines on both
datasets. For example, the performance gains achieved by
DeepSample compared to the best-performing baseline (i.e.,

2. https://pytorch.org/

9

RNN) on the Shear Boundary Layer dataset on PSNR and
SSIM are 5.03 and 0.292, respectively. We further visualize
examples of the root mean absolute errors (RMSE) of the
reconstructed data samples for all compared schemes in
Figure 8 and Figure 9, respectively. We observe that our
DeepSample achieves the best reconstructed data quality
with the least RMSE. Such performance gains demonstrate
our DeepSample model effectively utilizes the sampled data
to maximize the reconstructed data quality.

(a) PSNR Comparison (b) SSIM Comparison

Figure 6. Performance Comparisons on Data Reconstruction Quality
(Shear Boundary Layer)

(a) PSNR Comparison (b) SSIM Comparison

Figure 7. Performance Comparisons on Data Reconstruction Quality
(Shallow Cumulus Convection)

Figure 8. Visualization of RMSE (Shear Boundary Layer)

Figure 9. Visualization of RMSE (Shallow Cumulus Convection)

5.3.2 Q2: Discard Ratio
In the second set of experiments, we study the discard
ratio of DeepSample under different quality bounds. In
particular, we use Lerp, UNet, and FCNN to replace the
MDDR module as the temporal data reconstruction function
in our ECAS model, which allows them to make adaptive
sampling decisions to meet the corresponding reconstruc-
tion quality bounds of the application for dynamic data.
Please note that we do not include the RNN and TSR-
TVD for this experiment because they can only work with
the uniformly sampled dataset and are unable to handle
data that are dynamically sampled. In particular, we set the
quality bound using both PSNR (from 42 to 50) and SSIM
(from 0.92 to 0.98), which ensures reasonable rendering
effects of the reconstructed simulation data for effective
post hoc analysis. The evaluation results are shown in
Figure 10 and Figure 11. We observe that our DeepSample
scheme significantly outperforms all compared baselines
by achieving the highest discard ratio, which indicates the
lowest I/O bandwidth and storage overhead. For example,
our DeepSample achieves a performance gain of 27.2%
compared to the best-performing baseline (i.e., Lerp) when
we set the PSNR bound to be 42 on the Shallow Cumulus
Convection dataset. Such performance gains demonstrate
the effectiveness of the error-controlled deep data quality
estimation design in the DeepSample that maximizes the
discard ratio during the sampling process.

5.3.3 Q3: Meeting Quality Bounds
In the third set of experiments, we evaluate the performance
of DeepSample in terms of meeting the quality bounds
of the applications. The evaluation results are shown in
Figure 12 and Figure 13. We observe that DeepSample con-
sistently ensures the reconstructed data quality (i.e., Actual
PSNR and Actual SSIM) is above the corresponding quality
bounds of the application while keeping a high discard ra-
tio. For example, DeepSample achieves a reconstructed data
quality of 46.79 on PSNR (bound is 46) with a discard ratio

10

(a) PSNR Bound (b) SSIM Bound

Figure 10. Performance of All Compared Schemes on Discard Ratios
(Shear Boundary Layer)

(a) PSNR Bound (b) SSIM Bound

Figure 11. Performance of All Compared Schemes on Discard Ratios
(Shallow Cumulus Convection)

of 85% on the Shear Boundary Layer dataset. The results
indicate that DeepSample can reduce the I/O bandwidth by
85% while maintaining a high reconstructed data quality for
post hoc analysis. In addition, we observed that the discard
ratio of DeepSample decreases slightly when both PSNR
and SSIM bounds increase. The reason is intuitive: Deep-
Sample needs to sample more data (i.e., lower discard ratio)
to meet higher quality bounds. Additionally, we present
a fine-grained illustration of adaptive sampling decisions
made by DeepSample over 50 timesteps for both datasets in
Figure 14. We observe that DeepSample dynamically adjusts
the sampling window to meet the specified quality bounds
of the applications.

(a) PSNR Bound (b) SSIM Bound

Figure 12. Performance of DeepSample on Adaptive Temporal Sampling
(Shear Boundary Layer)

5.3.4 Q5: Improving the Performance of Lossy Compressor
In the fourth set of experiments, we show that DeepSample
can also be used to help the spatial quality-aware data
reduction methods (e.g., Lossy Compressors [14]) to im-
prove their data compression ratio while maintaining the
same level of data reconstruction quality. In particular, we

(a) PSNR Bound (b) SSIM Bound

Figure 13. Performance of DeepSample on Adaptive Temporal Sampling
(Shallow Cumulus Convection)

(a) Shear Boundary Layer

(b) Shallow Cumulus Convection

Figure 14. Examples of Adaptive Temporal Sampling by DeepSample

compare the compression ratio of lossy compressor with and
without DeepSample under the same quality bound. We use
the mean absolute error (MAE) metric, which is the primary
metric used to evaluate the performance of compressors.
The evaluation results are shown in Table 1 and Table 2.
We observe that DeepSample can significantly improve the
compression ratio of lossy compressor while keeping the
compression errors within bounds in all settings.

Table 1
Performance Comparisons on Compression Ratio With Lossy

Compressor (Shear Boundary Layer)

Algorithm MAE = 0.1 MAE = 0.05

Lossy Compressor + DeepSample 306.028 142.179

Lossy Compressor only 27.726 24.454

Table 2
Performance Comparisons on Compression Ratio With Lossy

Compressor (Shallow Cumulus Convection)

Algorithm MAE = 0.1 MAE = 0.05

Lossy Compressor + DeepSample 321.23 226.38

Lossy Compressor only 30.196 21.280

5.3.5 Q5: Ablation Study of DeepSample Scheme
In the fifth set of experiments, we perform an ablation study
to study the contribution of each component of DeepSample

11

to the reconstructed data quality. In particular, we first
evaluate the effectiveness of our error-controlled adaptive
sampling (ECAS) design by replacing it with a random
sampling scheme. In particular, we randomly sample the
same amount of selected data samples as our DeepSample
scheme with varying sizes of sampling windows under each
reconstruction quality bound and apply the same MDDR
network to reconstruct the discarded data samples. The re-
sults are shown in Figure 15 and Figure 16. We observe that
our ECAS design makes a clear contribution in improving
the reconstructed data quality compared to the random sam-
pling baseline while ensuring the reconstructed data quality
straightly meets the corresponding quality bounds. We also
evaluate the effectiveness of our multi-branch deep data
reconstruction (MDDR) design by replacing it with a single
branch reconstruction network design (SingleBranch) [22].
In particular, SingleBranch first leverages the extraction
network to extract the deep features for the consecutively
selected data samples. SingleBranch then applies the linear
interpolation to interpolate the deep features for discarded
data samples with varying sizes. Finally, SingleBranch lever-
ages a single reconstruction network to reconstruct each
discarded data sample using the interpolated deep features.
The results are shown in Figure 17 and Figure 18. We ob-
serve that our DeepSample clearly improves the discarded
ratios compared to SingleBranch under different reconstruc-
tion performance bound settings.

(a) PSNR Bound (b) SSIM Bound

Figure 15. Effectiveness of Error-Controlled Adaptive Sampling (Shear
Boundary Layer)

(a) PSNR Bound (b) SSIM Bound

Figure 16. Effectiveness of Error-Controlled Adaptive Sampling (Shallow
Cumulus Convection)

5.3.6 Q6: Parameter Analysis of DeepSample Scheme
In the last set of experiment, we study the performance of
our DeepSample in terms of the discarded ratio by varying
the number of branches (i.e., the number of reconstruction

(a) PSNR Bound (b) SSIM Bound

Figure 17. Effectiveness of Multi-Branch Deep Data Reconstruction
(Shear Boundary Layer)

(a) PSNR Bound (b) SSIM Bound

Figure 18. Effectiveness of Multi-Branch Deep Data Reconstruction
(Shallow Cumulus Convection)

networks N) in our MDDR module. In particular, we evalu-
ate the performance of our DeepSample by varying N from
2 to 10 under different PSNR and SSIM bounds 3. The results
are shown in Figure 19 and Figure 20. We observe that
our DeepSample achieves a higher discarded ratio when
N increases. This is because, with more reconstruction net-
works, our DeepSample is able to reconstruct the discarded
data samples from a larger sampling window that meets
the desirable reconstruction quality bound. Therefore, our
DeepSample could effectively discard more data samples
in the intermediate steps and achieve a better discarded
ratio. In addition, we also observe that our DeepSample can
achieve a reasonable discard ratio whenN is relatively small
(e.g., our scheme can achieve above 80% discarded ratios
when N equals 6 in most cases).

(a) PSNR Bound (b) SSIM Bound

Figure 19. Parameter Analysis of DeepSample Scheme on Varying
Number of Reconstruction Network (Shear Boundary Layer)

3. Note that we stop at N = 10 due to the memory space constraint
on our GPU server.

12

(a) PSNR Bound (b) SSIM Bound

Figure 20. Parameter Analysis of DeepSample Scheme on Varying
Number of Reconstruction Network (Shallow Cumulus Convection)

6 CONCLUSION

This paper presents the DeepSample framework to ad-
dress an in situ adaptive data sampling and reconstruction
problem in scientific simulation applications. DeepSample
addresses two challenges: in situ adaptive sampling for
complex scientific simulation data and error-controlled non-
uniform data reconstruction. We develop a multi-branch
deep decoder network based approach to effectively recon-
struct the discarded samples with rigorous quality assur-
ance. The results on two real-world scientific simulations
show that DeepSample significantly outperforms other rep-
resentative methods on both data discard ratios and recon-
structed simulation data quality. We believe DeepSample
will provide useful insights to address similar big data
challenges motivated by the high-velocity and large-volume
nature of the data beyond scientific simulations.

ACKNOWLEDGMENT

This research is supported in part by the National Science
Foundation under Grant No. IIS-2008228, CNS-1845639,
CNS-1831669, Army Research Office under Grant W911NF-
17-1-0409. The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted
as representing the official policies, either expressed or im-
plied, of the Army Research Office or the U.S. Government.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Government purposes notwithstanding
any copyright notation here on.

REFERENCES

[1] J. Wang, S. Hazarika, C. Li, and H.-W. Shen, “Visualization and
visual analysis of ensemble data: A survey,” IEEE transactions on
visualization and computer graphics, vol. 25, no. 9, pp. 2853–2872,
2018.

[2] H. Mizuta and Y. Yamagata, “Agent-based simulation and green-
house gas emissions trading,” in Proceeding of the 2001 Winter
Simulation Conference (Cat. No. 01CH37304), vol. 1. IEEE, 2001,
pp. 535–540.

[3] S. Hackstein, F. Vazza, M. Brüggen, J. G. Sorce, and S. Gottlöber,
“Simulations of ultra-high energy cosmic rays in the local universe
and the origin of cosmic magnetic fields,” Monthly Notices of the
Royal Astronomical Society, vol. 475, no. 2, pp. 2519–2529, 2018.

[4] P. D. Morris, A. Narracott, H. von Tengg-Kobligk, D. A. S. Soto,
S. Hsiao, A. Lungu, P. Evans, N. W. Bressloff, P. V. Lawford,
D. R. Hose et al., “Computational fluid dynamics modelling in
cardiovascular medicine,” Heart, vol. 102, no. 1, pp. 18–28, 2016.

[5] S. Di and F. Cappello, “Fast error-bounded lossy hpc data com-
pression with sz,” in 2016 ieee international parallel and distributed
processing symposium (ipdps). IEEE, 2016, pp. 730–739.

[6] W. He, J. Wang, H. Guo, K.-C. Wang, H.-W. Shen, M. Raj, Y. S.
Nashed, and T. Peterka, “Insitunet: Deep image synthesis for
parameter space exploration of ensemble simulations,” IEEE trans-
actions on visualization and computer graphics, vol. 26, no. 1, pp. 23–
33, 2019.

[7] I. Foster, M. Ainsworth, B. Allen, J. Bessac, F. Cappello, J. Y. Choi,
E. Constantinescu, P. E. Davis, S. Di, W. Di et al., “Computing
just what you need: Online data analysis and reduction at extreme
scales,” in European conference on parallel processing. Springer, 2017,
pp. 3–19.

[8] T. Peterka, D. Bard, J. Bennett, E. W. Bethel, R. Oldfield,
L. Pouchard, C. Sweeney, and M. Wolf, “Ascr workshop on in
situ data management: Enabling scientific discovery from diverse
data sources,” 2 2019.

[9] K.-L. Ma, “In situ visualization at extreme scale: Challenges and
opportunities,” IEEE Computer Graphics and Applications, vol. 29,
no. 6, pp. 14–19, 2009.

[10] J. Woodring, J. Ahrens, J. Figg, J. Wendelberger, S. Habib, and
K. Heitmann, “In-situ sampling of a large-scale particle simulation
for interactive visualization and analysis,” in Computer Graphics
Forum, vol. 30, no. 3. Wiley Online Library, 2011, pp. 1151–1160.

[11] A. Biswas, S. Dutta, J. Pulido, and J. Ahrens, “In situ data-driven
adaptive sampling for large-scale simulation data summariza-
tion,” in Proceedings of the Workshop on In Situ Infrastructures for
Enabling Extreme-Scale Analysis and Visualization, 2018, pp. 13–18.

[12] Y. Su, G. Agrawal, J. Woodring, K. Myers, J. Wendelberger, and
J. Ahrens, “Taming massive distributed datasets: data sampling
using bitmap indices,” in Proceedings of the 22nd international
symposium on High-performance parallel and distributed computing,
2013, pp. 13–24.

[13] J. Han and C. Wang, “Tsr-tvd: Temporal super-resolution for time-
varying data analysis and visualization,” IEEE Transactions on
Visualization and Computer Graphics, vol. 26, no. 1, pp. 205–215,
2019.

[14] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cap-
pello, “Error-controlled lossy compression optimized for high
compression ratios of scientific datasets,” in 2018 IEEE International
Conference on Big Data (Big Data). IEEE, 2018, pp. 438–447.

[15] X. Tong, T.-Y. Lee, and H.-W. Shen, “Salient time steps selection
from large scale time-varying data sets with dynamic time warp-
ing,” in IEEE Symposium on Large Data Analysis and Visualization
(LDAV). IEEE, 2012, pp. 49–56.

[16] B. Zhou and Y.-J. Chiang, “Key time steps selection for large-
scale time-varying volume datasets using an information-theoretic
storyboard,” in Computer Graphics Forum, vol. 37, no. 3. Wiley
Online Library, 2018, pp. 37–49.

[17] J. Zhou, O. C. Au, G. Zhai, Y. Y. Tang, and X. Liu, “Scalable
compression of stream cipher encrypted images through context-
adaptive sampling,” IEEE transactions on Information Forensics and
Security, vol. 9, no. 11, pp. 1857–1868, 2014.

[18] H. Luo, J. Wang, Y. Sun, H. Ma, and X.-Y. Li, “Adaptive sampling
and diversity reception in multi-hop wireless audio sensor net-
works,” in 2010 IEEE 30th International Conference on Distributed
Computing Systems. IEEE, 2010, pp. 378–387.

[19] D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving
lossy compression for scientific data sets based on multidimen-
sional prediction and error-controlled quantization,” in 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2017, pp. 1129–1139.

[20] Z. Zhou, Y. Hou, Q. Wang, G. Chen, J. Lu, Y. Tao, and H. Lin,
“Volume upscaling with convolutional neural networks,” in Pro-
ceedings of the Computer Graphics International Conference, 2017, pp.
1–6.

[21] Y. Xie, E. Franz, M. Chu, and N. Thuerey, “tempogan: A tem-
porally coherent, volumetric gan for super-resolution fluid flow,”
ACM Transactions on Graphics (TOG), vol. 37, no. 4, pp. 1–15, 2018.

[22] A.-D. Nguyen, W. Kim, J. Kim, and S. Lee, “Video frame inter-
polation by plug-and-play deep locally linear embedding,” arXiv
preprint arXiv:1807.01462, 2018.

[23] A. Shoshani and D. Rotem, Scientific data management: challenges,
technology, and deployment. CRC Press, 2009.

[24] W. F. Godoy, N. Podhorszki, R. Wang, C. Atkins, G. Eisenhauer,
J. Gu, P. Davis, J. Choi, K. Germaschewski, K. Huck et al., “Adios
2: The adaptable input output system. a framework for high-

13

performance data management,” SoftwareX, vol. 12, p. 100561,
2020.

[25] P. G. Lindstrom et al., “Fpzip,” Lawrence Livermore National
Lab.(LLNL), Livermore, CA (United States), Tech. Rep., 2017.

[26] H. Obermaier and K. I. Joy, “Future challenges for ensemble
visualization,” IEEE Computer Graphics and Applications, vol. 34,
no. 3, pp. 8–11, 2014.

[27] J. Han, J. Tao, and C. Wang, “Flownet: A deep learning framework
for clustering and selection of streamlines and stream surfaces,”
IEEE transactions on visualization and computer graphics, 2018.

[28] F. Hong, J. Zhang, and X. Yuan, “Access pattern learning with
long short-term memory for parallel particle tracing,” in 2018 IEEE
Pacific Visualization Symposium (PacificVis). IEEE, 2018, pp. 76–85.

[29] B. Kim and T. Günther, “Robust reference frame extraction from
unsteady 2d vector fields with convolutional neural networks,” in
Computer Graphics Forum, vol. 38, no. 3. Wiley Online Library,
2019, pp. 285–295.

[30] A. Hore and D. Ziou, “Image quality metrics: Psnr vs. ssim,” in
2010 20th international conference on pattern recognition. IEEE, 2010,
pp. 2366–2369.

[31] M. S. Sajjadi, B. Scholkopf, and M. Hirsch, “Enhancenet: Single
image super-resolution through automated texture synthesis,” in
Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 4491–4500.

[32] J. Zhang, S. H. Yeung, Y. Shu, B. He, and W. Wang, “Efficient mem-
ory management for gpu-based deep learning systems,” arXiv
preprint arXiv:1903.06631, 2019.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[34] Y. Li, A. Mahjoubfar, C. L. Chen, K. R. Niazi, L. Pei, and B. Jalali,
“Deep cytometry: deep learning with real-time inference in cell
sorting and flow cytometry,” Scientific reports, vol. 9, no. 1, pp.
1–12, 2019.

[35] A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep
neural network models for practical applications,” arXiv preprint
arXiv:1605.07678, 2016.

[36] M. Wang and W. Deng, “Deep visual domain adaptation: A
survey,” Neurocomputing, vol. 312, pp. 135–153, 2018.

[37] C.-H. Moeng and P. P. Sullivan, “A comparison of shear-and
buoyancy-driven planetary boundary layer flows,” Journal of the
Atmospheric Sciences, vol. 51, no. 7, pp. 999–1022, 1994.

[38] A. P. Siebesma, C. S. Bretherton, A. Brown, A. Chlond, J. Cuxart,
P. G. Duynkerke, H. Jiang, M. Khairoutdinov, D. Lewellen, C.-H.
Moeng et al., “A large eddy simulation intercomparison study of
shallow cumulus convection,” Journal of the Atmospheric Sciences,
vol. 60, no. 10, pp. 1201–1219, 2003.

[39] N. H. de Hoon, A. C. Jalba, E. Eisemann, and A. Vilanova, “Tem-
poral interpolation of 4d pc-mri blood-flow measurements using
bidirectional physics-based fluid simulation.” in VCBM, 2016, pp.
59–68.

[40] M. Livne, J. Rieger, O. U. Aydin, A. A. Taha, E. M. Akay, T. Kossen,
J. Sobesky, J. D. Kelleher, K. Hildebrand, D. Frey et al., “A u-
net deep learning framework for high performance vessel seg-
mentation in patients with cerebrovascular disease,” Frontiers in
neuroscience, vol. 13, p. 97, 2019.

[41] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional net-
works for semantic segmentation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2015, pp. 3431–
3440.

[42] S. Wiewel, M. Becher, and N. Thuerey, “Latent space physics: To-
wards learning the temporal evolution of fluid flow,” in Computer
Graphics Forum, vol. 38, no. 2. Wiley Online Library, 2019, pp.
71–82.

Yang Zhang is a PhD student in the Department
of Computer Science and Engineering at the
University of Notre Dame. He received his M.S.
degree from Indiana University-Bloomington in
2017 and a B.S. degree from Wuhan University
in 2013. His research interests include social
sensing, machine learning, deep learning, and
cyber-physical systems. He is a student member
of IEEE.

Hanqi Guo is an assistant computer scientist
at Argonne National Laboratory, scientist at the
University of Chicago Consortium for Advanced
Science and Engineering (CASE), and fellow of
the Northwestern Argonne Institute for Science
and Engineering (NAISE). His research interests
include data analysis, visualization, and machine
learning for scientific data. He has published
more than 40 research papers in top visual-
ization journals and conferences including IEEE
VIS, IEEE TVCG, and IEEE TPDS. He is also the

recipient of the best paper award in IEEE VIS 2019 and the winner of the
2017 Postdoctoral Performance Award in Basic Research in Argonne
National Laboratory. He received his Ph.D. degree in computer science
from Peking University in 2014 and his B.S. degree in mathematics and
applied mathematics from Beijing University of Posts and Telecommuni-
cations in 2009.

Lanyu Shang is a Ph.D. student in the School of
Information Sciences at the University of Illinois
Urbana-Champaign. She received an M.S. in
Data Science from New York University and a
B.S. in Applied Mathematics from the University
of California - Los Angeles (UCLA). Her research
interest primarily lies in online misinformation
detection using social media data. She is a stu-
dent member of IEEE.

Dong Wang received his Ph.D. in Computer
Science from University of Illinois Urbana-
Champaign (UIUC) in 2012. He is now an as-
sociate professor in the School of Information
Sciences at the University of Illinois Urbana-
Champaign. Dr. Wang’s research interests lie
in the area of reliable social sensing, human-
centric AI, cyber-physical computing, and smart
city applications. He received the NSF CAREER
award in 2019, Google Faculty Research Award
in 2018, Army Research Office Young Investiga-

tor Program (YIP) Award in 2017, Wing-Kai Cheng Fellowship from the
University of Illinois in 2012 and the Best Paper Award of IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS)
in 2010. He is a member of IEEE and ACM.

14

Tom Peterka is a computer scientist at Argonne
National Laboratory, a scientist at the University
of Chicago Consortium for Advanced Science
and Engineering (CASE), an adjunct assistant
professor at the University of Illinois at Chicago,
and a fellow of the Northwestern Argonne In-
stitute for Science and Engineering (NAISE).
His research interests are in large-scale paral-
lel in situ analysis of scientific data. Recipient
of the 2017 DOE Early Career Award and four
best paper awards, Peterka has published over

100 peer-reviewed papers in conferences and journals that include
ACM/IEEE SC, IEEE IPDPS, IEEE VIS, IEEE TVCG, and ACM SIG-
GRAPH. Peterka received his Ph.D. in computer science from the Uni-
versity of Illinois at Chicago in 2007, and he currently leads several DOE-
and NSF-funded projects.

