
IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JULY 2018 1

Extreme-Scale Stochastic Particle Tracing for
Uncertain Unsteady Flow Visualization and

Analysis

Hanqi Guo, Member, IEEE, Wenbin He, Sangmin Seo, Member, IEEE, Han-Wei Shen, Member, IEEE,

Emil Mihai Constantinescu, Chunhui Liu, and Tom Peterka, Member, IEEE

Abstract—We present an efficient and scalable solution to estimate uncertain transport behaviors—stochastic flow maps (SFMs)—for

visualizing and analyzing uncertain unsteady flows. Computing flow maps from uncertain flow fields is extremely expensive because it

requires many Monte Carlo runs to trace densely seeded particles in the flow. We reduce the computational cost by decoupling the

time dependencies in SFMs so that we can process shorter sub time intervals independently and then compose them together for

longer time periods. Adaptive refinement is also used to reduce the number of runs for each location. We parallelize over

tasks—packets of particles in our design—to achieve high efficiency in MPI/thread hybrid programming. Such a task model also

enables CPU/GPU coprocessing. We show the scalability on two supercomputers, Mira (up to 256K Blue Gene/Q cores) and Titan (up

to 128K Opteron cores and 8K GPUs), that can trace billions of particles in seconds.

Index Terms—Parallel particle tracing, Uncertain flow visualization, CPU-GPU hybrid parallelism.

✦

1 INTRODUCTION

V ISUALIZING and analyzing data with uncertainty are
important in many science and engineering domains,

such as computational fluid dynamics, climate, weather,
and materials sciences. Instead of analyzing deterministic
data resulted from statistical aggregation, scientists can gain
more understanding by investigating uncertain data that are
derived and quantified from experiments, interpolation, or
numerical ensemble simulations. For example, typical anal-
yses of uncertain flows involve finding possible pollution
diffusion paths in environmental sciences with uncertain
source-destination queries [1] and locating uncertain flow
boundaries [2] in computational fluid dynamics models
with uncertain Lagrangian analysis.

In this work, we develop a scalable solution to compute
stochastic flow maps (SFMs), which characterize transport
behaviors in uncertain unsteady flows. SFMs are the gen-

• Hanqi Guo is with the Mathematics and Computer Science Division,
Argonne National Laboratory, Lemont, IL 60439, USA.
E-mail: hguo@anl.gov

• Wenbin He is with the Department of Computer Science and Engineering,
the Ohio State University, Columbus, OH 43210, USA.
E-mail: he.495@buckeyemail.osu.edu

• Sangmin Seo is with Ground X Inc., Seoul, Korea.
E-mail: seo.sangmin@gmail.com.

• Han-Wei Shen is with the Department of Computer Science and Engi-
neering, the Ohio State University, Columbus, OH 43210, USA.
E-mail: shen.94@osu.edu

• Emil Mihai Constantinescu is with the Mathematics and Computer Sci-
ence Division, Argonne National Laboratory, Argonne, IL 60439, USA.
E-mail: emconsta@mcs.anl.gov.

• Chunhui Liu is with the Department of Mathematics, Faculty of Science,
Kyoto University, Kyoto, 606-8502, Japan.
E-mail: chunhui.liu@math.kyoto-u.ac.jp.

• Tom Peterka is with the Mathematics and Computer Science Division,
Argonne National Laboratory, Lemont, IL 60439, USA.
E-mail: tpeterka@mcs.anl.gov

eralization of flow maps of deterministic data and hence are
the basis for uncertain flow analysis. Formally, the flow map
is a function that maps the start spatiotemporal location to
the end location for the given time in a flow field; the SFM
follows the same definition except that the end location is
stochastic.

Applications based on SFMs include uncertain flow sep-
aratrix extraction and topology analysis. For example, finite-
time Lyapunov exponent (FTLE) analysis can be generalized
to understand uncertain transport behaviors in uncertain
flows [3]. The distribution of Lagrangian coherent structures
(LCS)—the flow boundaries in unsteady flows—can be fur-
ther extracted as the ridges in stochastic FTLE fields [2]. The
concept of vector field topology is also generalized to uncer-
tain datasets in recent studies [4], [5]. Likewise, vortices [6]
and closed streamlines [1] are studied in uncertain flows.
All of these uncertain flow analysis methods require SFM
computation.

The main obstacle in uncertain flow analysis is the high
computational cost of SFMs. Currently, the only practical
solution for computing SFMs is to perform Monte Carlo
runs, which trace the particles stochastically in the uncertain
data. However, one must trace billions or even trillions of
particles for a typical analysis even for small scale data.
For example, if the number of grid points and Monte Carlo
runs is 106 and 103, respectively, and if the data has 103

time steps, the overall number of particles will be 1012. As
documented in previous studies [2], [5], it may take hours
to days to run a small problem, even with GPU acceleration.

We focus on scalable and parallel SFM computation with
supercomputers. In recent publications, the parallel effi-
ciency is about 45% on 16K cores for 162M particles [7] and
35% on 16K cores for 40M particles [8]. Tracing billions or
even trillions of particles at extreme scale is still challenging.

IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JULY 2018 2

We have observed two major differences between deter-
ministic and stochastic flow map computations. First, the
task dependencies in deterministic flow map computation
are strict, but they can be relaxed in SFM computation.
By default, one must trace a particle based on its current
location. In the stochastic case, the “current” location is
also stochastic; thus the strong dependency can be released
by transforming the problem into a probabilistic model.
Second, the problem size of SFM computation is much
larger. Existing parallel algorithms do not scale for the
numbers of particles required by the Monte Carlo runs.
The challenges are the memory footprint, the designs of
task models, load balancing, and communication patterns.
Solving these challenges requires a new parallel framework
for SFM computation.

We propose a decoupled SFM computation that removes
the time dependencies, and in turn to reduce communica-
tion and improving scalability. For time-varying uncertain
flow data, we can decompose the time domain into subin-
tervals, independently compute SFMs for each subinterval,
and then compose the results for long time intervals of inter-
est. The rationale for the composition is the the Chapman-
Kolmogorov equation [9], and the computation is based
on sparse matrix multiplication. Because the working data
(two adjacent time steps) is much smaller than the whole
sequence, we can replicate the working data across parallel
processes as much as possible, so that more data are locally
available. Decoupling the advection into short time intervals
also shortens the travel distances of particles, and thus
less communication is required. In addition, we introduce
adaptive refinement over the number of Monte Carlo runs
for each seed location. Experiments show that computing
decoupled SFMs combined with adaptive refinement is
more efficient.

We also propose a novel task parallelism that enables
CPU/GPU coprocessing when GPUs are available in com-
puting nodes. The philosophy of coprocessing is to dynam-
ically schedule complex and heavy tasks for GPUs while
leaving lighter tasks for CPUs. The granularity of a task
is a packet of particles associated with the same block.
Within each process, a dedicated thread is used to schedule
the tasks and to exchange tasks between processes in a
nonblocking and asynchronous manner.

We demonstrate the scalability of our methods on two
supercomputers: Mira at Argonne National Laboratory and
Titan at Oak Ridge National Laboratory. On Mira, we test
the performance up to 1 million Blue Gene/Q cores over
16,384 nodes. On Titan, we test up to 131,072 AMD Opteron
cores cooperating with 8,192 NVIDIA K20X GPUs. On these
supercomputers, our method allows tens of billions of par-
ticles to be traced in a few seconds. Our system thus can
help scientists analyze uncertain flows in greater detail with
higher performance than what was previously possible. In
summary, the contributions of this paper are as follows.

• A decoupled scheme that makes it possible to com-
pute SFMs in a highly parallelized manner

• An adaptive refinement algorithm to reduce SFM
estimate cost

• A fully asynchronous parallel framework for
stochastic parallel tracing based on thread pools,

TABLE 1
Nomenclature.

Symbol Domain Meaning
n 2 or 3 Spatial dimension of the flow
i, j, k, l, q, r, s N Integer indices
t R Time
nc N Number of cells
Ci R

n ith cell
C̄i Rn Centroid of the ith cell
V (Ci) R Volume of the ith cell
δ R Maximum cell size in any dimension
D Rn Spatial domain D = ∪iCi

Pr(·) [0, 1] Probability of a random event
O(·) R Big O notation
O R

nc×nc Matrix of O(·)
|| · || R

n → R Euclidean norm in R
n

v(t,x) Rn+1 → Rn Deterministic flow
φ(t0, t1,x) R

n+2 → R
n Deterministic flow map

V(t,x) Rn+1 → Rn Stochastic flow
Φ(t0, t1,x) R

n+2 → R
n Stochastic flow map

ρ(t0, t1,x0,x1) R2n+2 → [0, 1] Transition probability from (t0,x0)
to (t1,x1)

p(t0, t1, i, j) R
2 × N

2 → [0, 1] Transition probability from the ith
cell at t0 to the jth cell at t1

L R Lipschitz constant of ρ
H(t0, t1, i) R2 × N → R Entropy of p(t0, t1, i, ·)

P
t1
t0

R
2 → [0, 1]nc×nc Matrix form of p(t0, t1, ·, ·)

m {m ∈ N|m ≥ 2} Number of time spans that are cou-
pled

E(t0, . . . , tm;
i0, im)

R
m × N

2 → R Absolute error of coupled SFM esti-
mate over m time spans

E(t0, . . . , tm) R
m → R

nc×nc Matrix form of E
abs(·) Element-wise absolute value of a

matrix
4 Element-wise less or equal to

nonblocking communication, and lock-free data
structures

• A parallel CPU/GPU coprocessing particle tracing
implementation

2 BACKGROUND

We formalize the concepts of SFMs and review the related
work on uncertain flow visualization and parallel particle
tracing. The notation in this paper is enumerated in Table 1.

2.1 Deterministic and Stochastic Flow Maps

We review the concepts of flow maps in deterministic data
and then describe their generalization in uncertain flows.

Formally, in a deterministic time-varying flow field v :
R
n+1 → R

n, the flow map φ maps the (n + 2)-dimensional
tuple (t0, t1,x0) into R

n, where n is the data dimension and
t0, t1 are time. As illustrated in Figure 1(a), the physical
meaning of φ(t0, t1,x0) is the location at time t1 of the
massless particle released at the spatiotemporal location
(t0,x0). Assuming v satisfies the Lipschitz condition, the
flow map is defined by the initial value problem

∂φ(t0, t1,x0)

∂t1
= v(t1, φ(t0, t1,x0)), and φ(t0, t0,x0) = x0.

(1)
In analyses such as FTLE, the flow map is usually com-
puted at various resolutions to capture ridges of increasing

IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JULY 2018 3

(a) (b) (c)

Fig. 1. (a) Flow map computation in a deterministic flow; (b) direct SFM estimate in an uncertain flow; (c) decoupled SFM estimate.

complexity. Particles are densly seeded and traced over time
t1. Numerical methods, such as Euler or Runge-Kutta, are
usually used in the particle tracing.

The uncertain flow field V : Rn+1 → R
n and its flow

map Φ are stochastic. As shown in Figure 1(b), for a given
seed (t0,x0), the final location of this particle at time t1 is
a random variable denoted as Φ(t0, t1,x0). The transition
probability density function (PDF) of Φ(t0, t1,x0) is defined
as

ρ(t0, t1,x0,x1)
def
= Pr(x1 = Φ(t0, t1,x0)), (2)

where ρ is a (2n + 2)-dimensional scalar function and
∫

D
ρ(t0, t1,x0,x1)dx1 = 1 for any given t0, t1, and x0.

We assume that ρ is Lipschitz continuous in order to ap-
proximate the error of our methods (see Appendix for more
details). We use the discretized form of SFM for computation
and storage:

p(t0, t1, i, j)
def
= Pr(y = Φ(t0, t1, C̄i) ∈ Cj)

=

∫

Cj

ρ(t0, t1, C̄i,y)dy, (3)

where Ci and Cj are the ith and jth cell in the mesh
discretization, respectively; C̄i is the centroid of Ci; and
∑

j p(t0, t1, i, j) = 1. The straightforward approach to esti-
mate p is direct Monte Carlo simulation based on the Euler-
Maruyama method. For each cell Ci, we trace a number of
particles seeded from the centroid C̄i and then estimate the
density of particles as the output.

Our adaptive SFM computation is related to but different
from the adaptive refinement of deterministic flow maps.
Sadlo and Peikert [10] proposed an adaptive mesh refine-
ment (AMR) approach to filter ridges in the deterministic
FTLE fields. Barakat and Tricoche [11] reconstruct flow
maps based on the reconstruction of sparse samples. For
SFM computation, instead of controlling the density of seed
locations, we adaptively control the number of stochastic
runs for each input seed location, as explained in Section 3.1.

Our decoupled SFM estimate is related to the hierarchi-
cal line integration technique [12], which decouples deter-
ministic flow map computation with reduced accuracy for
GPU parallelism. The error is bounded by the second order
of the cell size if the flow map φ is Lipschitz continuous.
We generalize the decoupling scheme to estimate SFMs in
uncertain unsteady flows and theoretically derive the error
bound based on the Lipschitz continuity of ρ. More details
on decoupled SFM estimate are in Section 3.2 and Appendix.

2.2 Uncertain and Ensemble Flow Visualization

Comprehensive reviews of uncertainty visualization can be
found in [13], [14], and reviews of flow visualization are
in [15], [16], and [17].

We categorize uncertain flow visualization techniques
into two major types: Eulerian and Lagrangian methods.
This classification based on fluid dynamics considers flow
fields at specific spatiotemporal locations and at individual
moving parcels, respectively. Eulerian uncertain flow visu-
alizations usually directly encode data into visual channels,
such as colors, glyphs [18], and textures [19]. Our focus
instead in this paper is on the Lagrangian methods that
analyze transport behaviors in uncertain unsteady flows.

Lagrangian uncertain flow visualization includes topol-
ogy analysis for stationary data and FTLE-based analysis for
time-varying data. Otto et al. [4] extend vector field topol-
ogy to 2D static uncertain flow. Monte Carlo approaches
are used to trace streamlines that lead to topological seg-
mentation. The same technique is applied to 3D uncertain
flows in a later work [5]. For 3D unsteady flows, vector
field topologies are no longer feasible because they are
unstable and overwhelmingly complicated. FTLE and LCS
are alternatives for analyzing unsteady flows. One use of
FTLE in uncertain unsteady flows is finite-time variance
analysis [3], which is based on the variance of particles
advected from the same locations over a time interval of
interest. Recently, Guo et al. [2] proposed two metrics to
generalize FTLE in uncertain unsteady flows: D-FTLE and
FTLE-D. In this paper, we address the common problem of
these methods: the high computational cost of Monte Carlo
particle tracing.

Our study is also related to ensemble flow visualization.
For example, Guo et al. [20] characterized differences be-
tween ensemble members based on the analysis of path-
lines in flow fields. Höllt et al. [21] proposed a method
to visualize flow trajectories in ensemble simulations. The
trajectories can be further aggregated and visualized with
various visual representations such as contour boxplots [22].

2.3 Parallel Particle Tracing

Parallel particle tracing is a challenging problem in both
the HPC and visualization communities. A comprehensive
review of this topic can be found in [23]. Parallel particle
tracing algorithms can be categorized into two basic types—
parallel over data and parallel over seeds, as illustrated in
Figure 2.

Parallel-over-data algorithms rely on data partitioning
for load balancing. A common practice of data partitioning

IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JULY 2018 4

Process 1 Process 2

(a) (b) (c)

Fig. 2. Existing parallel particle tracing paradigms include (a) parallel
over data and (b) parallel over seeds. We employ a task-parallel scheme
(c) in this paper. Our task granularity is a packet of particles associated
with the same block.

is to subdivide the domain into regular blocks. Peterka et
al. [24] show that static round-robin block assignments with
fine block partitioning can lead to good load balancing in
tracing streamlines in 3D vector fields. The static load bal-
ancing can be further improved by assigning blocks based
on estimated workloads [25]. In addition to regular blocks,
irregular partitioning schemes are used to improve load
balancing. For eample, Yu et al. [26] propose a hierarchical
representation of flows, which defines irregular partitions
for parallel particle tracing. Similarly, mesh repartitioning
algorithms are used to balance the workload across pro-
cesses [27]. For time-varying data, Nouanesengsy et al. [7]
partition processes into groups that independently compute
multiple FTLE fields with different time spans, in order to
reduce global synchronization and decrease I/O overhead.
In our study, SFMs can be estimated by decoupling SFMs
into short time spans that are independent and can be
efficiently computed, instead of tracing particles in long
time intervals.

In parallel-over-seeds algorithms, seeds are distributed
over processes. Pugmire et al. [28] explore this strategy to
load data blocks on demand; thus no communication occurs
between processes to exchange particles. Guo et al. [29]
present a framework to manage the on-demand data access
based on a key-value store. Fine-grained block partitioning
and data prefetching are employed to improve the parallel
efficiency. The parallel-over-seeds paradigm shows better
performance in applications such as 3D stream surface com-
putation [30], but it often suffers from load-balancing issues
because flow behaviors are complicated and unpredictable.
Work stealing has been used to improve the load balancing
in 3D stream surfaces computation [31]. Mueller et al. [32]
propose a work-requesting approach that uses a master
process to dynamically schedule the computations. Recently,
Zhang et al. [33] use k-d trees to dynamically redistribute
particles to balance the workload across different processes,
but the k-d tree decomposition requires frequent and expen-
sive global synchronization for task scheduling. We instead
dynamically schedule the tasks between worker threads
within single processes in an asynchronous manner.

Hybrid methods combine both parallelization
paradigms. For example, a hybrid master/worker model
can be used to dynamically schedule both particles and
blocks [28]. DStep [8] employs multitiered task scheduling
combined with static data distribution. Camp et al. [34]
develop a hybrid implementation based on an MPI/threads
programming model, which is also used in a distributed

PDF of the First

Iteration

Seed ()

N

PDF

Stable? Done
Y

Traced particles

(current iteration)

Traced particles

(past iterations)

PDF of the

 th Iteration

Ci Ci

Fig. 3. Adaptive refinement of the SFM of cell Ci. In each iteration, a
batch of particles is traced from the cell center Ci, and then the PDF
is estimated from all traced particles including the current and all past
iterations. The iteration loop exits if the PDF converges.

GPU-accelerated particle tracing implementation [35].
We regard our system as a hybrid method. Our

MPI/threads model defines tasks as packets of particles
instead of single particles that are used by Camp et al. [34].
This model also enables us to trace massive amounts of
particles on all available CPU and GPU resources simul-
taneously. Our study is also related to other particle-
based Monte Carlo simulations, such as stochastic differ-
ential equations [9], particle physics, and ray tracing [36].
However, SFM estimate is a unique problem that requires
a tailored parallel algorithm design for uncertain unsteady
flow data.

3 ADAPTIVE AND DECOUPLED SFM ESTIMATE

In this section, we introduce the adaptive and decoupled
schemes to estimate SFMs with Monte Carlo simulations.
We use a synthetic uncertain double gyre dataset to demon-
strate the decoupled SFM estimate results. The original
double gyre1 is a 2D, deterministic, time-varying, closed-
form vector field dataset defined on [0, 0] × [2, 1]; and we
synthetically injected uncertainties by adding independent
Gaussian noises into the u and v components:

f(x, t) = sin2 tx2/3 + (1− sin t/3)x
u(x, y) = −π sin(πf(x)) cos(πy) +N(0, 0.022)

v(x, y) = π cos(πf(x)) sin(πy) df
dx

+N(0, 0.022)
, (4)

where N is a Gaussian random variable with the variance
of 0.022. We uniformly discretized the spatial domain into
three different resolutions—100× 50, 200× 100, and 400×
200—to evaluate our SFM estimate results.

3.1 Adaptive Refinement of SFMs

We propose an adaptive refinement approach to dynami-
cally control the number of Monte Carlo runs for each seed
location in order to reduce computational cost. The adaptive
refinement for each seed is illustrated in Figure 3. Without
loss of generality, we estimate the SFM of the ith cell (Ci)
in the bottom left corner in the figure. In every iteration, a
batch of particles is traced from the cell center C̄i; and then
the probability density from all traced particles—including

1. http://shaddenlab.berkeley.edu/uploads/LCS-tutorial/

IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JULY 2018 5

E
n

tr
o

p
y

R
M

S
E

 (

)

RMSE

Iteration

Termination

Entropy

8000

4.0

5.0

6.0

7.0

8.0

20 40 60 80
IterationsIterations

(b)(a)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Fig. 4. Experiment results of the synthetic uncertain double gyre data:
(a) entropy-error-iteration plot showing the changing SFM entropy and
RSME values at locations A and B (marked in b) with respect to the
number of iterations; (a) adaptive refinement level (number of iterations)
in the synthetic uncertain double gyre data. In this experiment, the time
interval is [0, 2]; the mesh discretization is 200 × 100; and the stop
criterion ∆H is 0.05.

the current and all past iterations—is estimated as a discrete
histogram in array pk(t0, t1, i, ·), where · is the cell index
and k is the index of the current iteration. In general, any
density estimator can be used, and we use the simplified
cloud-in-cell (CIC) [37] approach in our experiments. The
density value in each cell is proportional to the number of
particles that fall into the cell. The iteration loop exits if the
array pk(t0, t1, i, ·) converges, and then we use pk(t0, t1, i, ·)
as the estimation results.

In this study, we use the difference of information en-
tropies between pk−1(t0, t1, i, ·) and pk(t0, t1, i, ·) as the stop
criterion. As mentioned by Hofmann et al. [38], the number
of iterations can be determined by any measurable stop
criterion. We use the difference of entropies, because the
computational and space complexity of computing entropy
are less expensive than other metrics such as and earth
mover’s and point-wise distances. Formally, the entropy of
pk(t0, t1, i, ·) is defined as

Hk(t0, t1, i) = −
∑

j

pk(t0, t1, i, j) log pk(t0, t1, i, j). (5)

If the difference ∆Hk = |Hk(t0, t1, i) − Hk−1(t0, t1, i)| is
greater than a preset threshold ∆H , we inject a number of
particles at C̄i to estimate the probability density; otherwise
we exit the iteration.

The threshold ∆H is empirically determined to trade off
the computational cost and the precision. In practice, before
conducting large runs on supercomputers, one can sample
the problem space and determine a proper ∆H based on the
entropy-error-iteration plot, as shown in Figure 4(a). In this
figure, the SFM entropy of each location A and B converges
to a constant because of the Law of Large Numbers. The
root mean squared error (RMSE) measures the differences
of SFMs between each iteration and the last iteration in the
plot. Based on the figure, we choose to use ∆H = 0.05 to
terminate iterations before the entropy starts to converge.
As a result, different numbers of iterations, which are color-
coded in Figure 4(b), are used to estimate the SFMs.

Figure 5 visually compares the results with adaptive
refinements and fixed numbers of Monte Carlo runs. The
adaptive refinement uses fewer particles (278.24 per cell on
average) to achieve roughly the same quality as uniformly

using 1,600 particles, while uniformly using 300 particles
per cell leads to an under-sampled result. Considering the
SFM estimated with a large number (1,600) of particles
as the ground truth, the RMSE of the results using 300
and adaptive samples are 3.61 × 10−4 and 2.15 × 10−4,
respectively; the corresponding peak signal-to-noise ratio
(PSNR) values are 68.70 dB and 73.21 dB, respectively.

3.2 Decoupled Estimate of SFMs

As illustrated in Figure 1, the idea of decoupled SFM esti-
mate is to avoid the direct computation of p(t0, t2, i, k) by
divide-and-conquer. First, we decompose the time interval
[t0, t2] into two subintervals [t0, t1] and [t1, t2] (t0 < t1 <
t2). Second, we independently compute p(t0, t1, i, j) and
p(t1, t2, j, k) for any j. Third, we approximate p(t0, t2, i, k)
with the following equation:

p(t0, t2, i, k) ≈
∑

j

p(t0, t1, i, j)p(t1, t2, j, k). (6)

The rational of Eq. (6) is based on the Chapman-
Kolmogorov equation and detailed in the Appendix. Eq. (6)
can also be written in the matrix form:

Pt2
t0

≈ Pt1
t0
Pt2

t1
. (7)

By generalizing Eq. (7), we can approximate Ptm
t0

for
the given time interval [t0, tm]. We first decompose the
time domain [t0, tm] into m subintervals [t0, t1], [t1, t2], · · · ,
[tm−1, tm] (t0 < t1 < · · · < tm), and then independently
compute the SFM for each subinterval. The SFM Ptm

t0
can

be estimated as the multiplication of the results for all
subintervals:

Ptm
t0

≈ Pt1
t0
Pt2

t1
· · ·Ptm

tm−1
. (8)

We study the approximation error of decoupled SFM
estimate both theoretically and empirically. The theoretical
error analysis, detailed in the Appendix, is based on end
locations of particles being discretized into the indices of
cells. The absolute error is no larger than O(mδn+1), where
δ is the maximum cell size in any dimension and m is the
number of subintervals that are coupled. Finer mesh dis-
cretization (smaller δ) and smaller number of subintervals
m will lead to preciser results.

Figure 6 empirically studies the approximation error of
the synthetic uncertain double gyre data by sweeping δ
and m. We use the fixed 1,600 particles per cell for all
(sub)intervals in this experiment. We first study the dis-
cretization error by using different spatial resolutions of
SFMs. Figure 6 (a), (b), and (c) use three different spatial
resolution and thus δ equals to 2, 1, and 0.5, respectively.
We can see that the estimate results significantly improves
by decreasing δ. We also study the approximation error
introduced by m. The first row (m = 1) is the direct estimate
of P2

0. In every next row, we increase m by the factor of two.
Each row uniformly subdivides the time interval [0, 2] into
m subintervals and then estimate P2

0. For example, in the
third row (m = 4), P2

0 is derived from P0.5
0 , P1

0.5, P1.5
1 ,

and P2
1.5. We can observe that the more subintervals that

are composed, the more errors are introduced. Overall all,

IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JULY 2018 6

Entropy EntropyPDF

A

(a) 300 Samples Per Cell (b) 1,600 Samples Per Cell (c) Adaptive Refinement

PDF Entropy PDF
0 08.0 0.045

(c) Adaptive Refinement Refinementles Per Cell

AAAAAAAAA

llllll leles s PePer r CeCellllmpleles Per Cell

Fig. 5. Experiment results of the synthetic uncertain double gyre data using 300 (a), 1600 (b), and adaptive numbers (c) of particles per cell. The
time interval is [0, 2] and the mesh discretization is 200× 100. Each PDF plot visualizes and magnifies two SFMs of A (left) and B (right).

(a) 100x50 (δ=0.02) (b) 200x100 (δ=0.01) (c) 400x200 (δ=0.005)

D
ir

e
ct

E
st

im
a

te

(m
=

1
)

D
e

co
u

p
le

d

E
st

im
a

te

(m
=

2
)

D
e

co
u

p
le

d

E
st

im
a

te

(m
=

4
)

D
e

co
u

p
le

d

E
st

im
a

te

(m
=

8
)

D
e

co
u

p
le

d

E
st

im
a

te

(m
=

1
6

)

Entropy Entropy EntropyPDF PDF PDF
0 07.2 0.10 0 8.0 0 10.00 0.045 0 0.007

RMSE=0, PSNR=∞

RMSE=7.611×10-4, PSNR=51.14 dB

RMSE=1.171×10-3, PSNR=47.40 dB

RMSE=1.681×10-3, PSNR=44.25 dB

RMSE=2.223×10-3, PSNR=41.83 dB

RMSE=0, PSNR=∞

RMSE=2.312×10-4, PSNR=66.10 dB

RMSE=2.630×10-4, PSNR=64.98 dB

RMSE=2.943×10-4, PSNR=64.01 dB

RMSE=3.468×10-4, PSNR=62.58 dB

RMSE=0, PSNR=∞

RMSE=1.060×10-4, PSNR=74.70 dB

RMSE=1.165×10-4, PSNR=73.88 dB

RMSE=1.213×10-4, PSNR=73.53 dB

RMSE=1.239×10-4, PSNR=73.34 dB

EntropyPDF PDF
0 0.10 0 8.0 00 0.10 0

Entropy PDPDF
0 10.00.045 0

PDPDF
0

RMSE=2.2

0.0070710.0 0

 dB dB d dB

 dB d dB dB

 dB d dB

 dB d dB d dB

(m
=

1
)

RM

(m(m
=

2
=

2
)

(m(m
=

4
=

4
)

RM

(m
=

2
)

RMRMSESE=7=7.6.6

(m
=

4
)

RMSE=1.1

RMRMSESE=7=7.6.6

(m(m
=

8
=

8
)

(m
=

1
6

)

RMSE=2.2

(m
=

8
)

RMRMSESE=1.6

RMSE=1.1

07.2 00 0.10 0

RMRM RMRMSE=0, PSPSPSNR=∞

1414 d dB1414 d dB RMRMSESE=2=2.3.3RMRMSESE=2=2.3.3

RMRM

.6.61111×1010-4, , , , PSPSNRNR=5=51.1.1414PSPSNRNR=5=51.1.1414

RMRMSE=0, , PSPSPSNR=∞=∞

 dB dB RMSE=2.6RMSE=2.6.171×10-3, , PSNR=47.40PSNR=47.40

14 dB RMRMSESE=2=2.3.3.6.61111×1010 , , PSNR=51.14

.223×10-3, PSNR=41.83 dB RMSE=3.4.223 10-3 PSNR=41.83 dB d dB RMSE=3.4RMSE=3.4.223 10-3 PSNR=41.83PSPSNRNR=4=41.1.8383

 dB d dB RMRMSESE=2.9RMRMSESE=2.9.681×10-3, , PSNR=44.25PSPSNRNR=44.25

 dB RMSE=2.6.171×10 , , PSNR=47.40

00.04545 10.0 08.0 00

RMRM PSPSPSNR=∞PSNRRMSE=0, PSPSPSNR=∞PSRMSE=0, PSPSPSNRNRPSPSPSPSPSPSNRPSPSNR=∞PSRMSE=0, PS

 d dB d dB , , , , PSPSNRNR=7=74.4.7070PSNR=74.70PSPSNRNR=7=74.4.7070RMRMSESE=1=1.0.06060×1010-4, , RMRMSESE=1=1.0.06060 1010-4-4, , , , , , PSPSNRNR=6=66.6.1010PSPSNRNR=6=66.6.1010.3.31212×1010-4, , .3.31212 1010-4-4

RM

, , , , , , PSPSNRNR=6=66.6.1010.3.31212×1010 , ,

PSPSPSNR=∞RMSE=0, , PSPSPSNR=∞PSRMSE=0, , PS

 dB dB , , , , , PSNR=73.88PSPSNRNR=7=73.3.8888PSNR=73.88RMSE=1.165×10-4, , RMSE=1.165 -4, , , , PSNR=64.98PSNR=64.98.63030×10-4, .63030 -4, , , , , , PSPSNRNR=6=64.4.9898.63030×1010 , ,

 dB , , , PSNR=74.70RMRMSESE=1=1.0.06060×1010 , , , , , , PSNR=66.10.3.31212×1010 ,

 dB RMSE=1.239×10-4, PSNR=73.34 dB d dB RMSE=1.23939 10-4 PSNR=73.34PSNR=73.34PSPSNRNR=7=73.3.3434RMSE=1.23939 10-4RMSE=1.23939 -4-4.46868×10-4, PSNR=62.58PSNR=62.58PSPSNRNR=6=62.2.5858.468 10-4.468 -4-4

 dB d dB d dB , , , PSNR=73.53PSPSNRNR=7=73.3.5353PSPSNRNR=73.53, RMRMSESE=1=1.2.21313×1010-4, RMRMSESE=1.213 10-4-4, , PSNR=64.01PSPSNRNR=64.01PSPSNRNR=64.01, .94343×10-4.94343 -4-4

 dB , , , , PSNR=73.88RMSE=1.165×10 , , , , , , PSNR=64.98.63030×10 ,

Fig. 6. Comparison between direct (first row) and decoupled SFM estimate (other rows) of the synthetic uncertain double gyre data with three
spatial resolutions 100× 50 (a), 200× 100 (b), and 400× 200 (c). Each PDF plot visualizes and magnifies two SFMs of A (left) and B (right). (The
color maps for a, b, and c are different because SFM and SFM entropies are computed with different mesh discretization.)

we can see that the decoupled SFM estimate results approx-
imate those of the direct estimate, and the error matches
our theoretical analysis. More details on the bounded error
approximation can be found in Appendix.

The decoupled SFM estimate is the key to achieving scal-
ability in our study. Decoupling removes the time depen-
dencies, so that we can first independently compute SFMs
for subintervals and then compose the results. Decoupling
has two benefits. First, it reduces the communication cost
because the lifetimes and travel distances of particles are less
than those in long time periods. Second, it reduces memory
cost because the working datasets in the decoupled estimate
are smaller. More details on the scalable computation are in
next sections.

4 SOFTWARE ARCHITECTURE DESIGN

Our parallel particle tracing framework exploits hierarchical
parallelization. At the top level, the processes are divided

into groups. Each group replicates the working data and
traces a different set of seeds. Inside each group, we par-
allelize over the data. Each process has a portion of data
blocks. A novel task model based on MPI/thread hybrid
parallelization is used. The rationale for our hierarchy is
based on adaptive and decoupled SFM estimate. First, the
decoupling makes it possible to have higher degrees of data
replication for better scalability because the working data
of two adjacent time steps are smaller than the data of
the whole dataset. Second, the adaptive refinement allows
asynchronous processing, which also boosts the scalability
of parallel particle tracing.

We implement a novel task model design—packets
of particles—to achieve high parallel efficiency in the
MPI/thread model. Within each process, the tasks are
scheduled and processed by a pool of threads in paral-
lel. The interprocess task exchange is managed by a ded-
icated thread, which handles nonblocking MPI commu-
nication. Lock-free data structures are used to exchange

IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JULY 2018 7

data between threads. In general, this design is fully
asynchronous—communication and computation are over-
lapped, and threads are synchronization-free. This design
improves data locality and enables CPU/GPU coprocessing.

4.1 Initialization

Because the decoupled SFM estimate yields smaller working
data, typically two adjacent time steps, we can replicate
data in order to improve data locality. We first partition the
data into blocks and then determine how many processes
to assign to each group for the given memory limit. For
example, given 4 processes, 64 total blocks, and a maximum
of 32 blocks per process, we would create 2 process groups.

Within each group, the blocks are distributed across
processes. As in Peterka et al. [24], we statically assign
blocks to processes by a round-robin scheme. Each process
is in charge of one or more blocks. In addition, threads
and lock-free data structures for task exchanging are created
upon the initialization.

4.2 Task Model

We define a task as a tuple (blkID, type,

particles[]), where particles[] is a packet of
particles associated with only one block (blkID). The
granularity of a task is one or more particles, up to a given
limit. Each particle is a tuple (x0, x) consisting of its initial
and current spatiotemporal locations, respectively.

Four types of tasks are depicted in the model: initializa-
tion (INIT), tracing (TRACE), return (RETURN), and checking
(CHECK). Initialization tasks are used to initialize particles
for a list of seed locations in the given block. Particles are
created either by the system for bootstrapping or by the
CHECK tasks when more particles are necessary to refine the
SFMs. Tracing tasks start or continue to trace a packet of
particles that are not finished yet. If particles are moving
out of the current block, new tracing tasks associated with
the target blocks are created. Return tasks are created by
tracing tasks to send finished particles to their home blocks.
Checking tasks check termination for particles released at
the same location x0. The density is written to the output
sparse matrix if it is converged; otherwise new initialization
tasks are created to refine the density.

4.3 Thread Model

We use a thread pool for parallelism within a single pro-
cess. Figure 7 illustrates the thread model in our design.
Two types of threads exist: the communicator/scheduler
(comm/sched) threads and the worker threads. Several
lock-free producer-consumer queues are used to schedule
and exchange tasks between threads. Two groups of queues,
the work queues (QCPU

work and QGPU
work) and the send queues

(Qsend), keep the pending tasks for the local and remote
processes, respectively.

Algorithm 1 shows the pseudo code of the worker thread
main loop. The worker threads function as both producers
and consumers. Worker threads consume tasks and also
produce new tasks to deliver particles to their next or final
destinations. The new task is enqueued to the work queue

Qsend
p0 p1 ... pm-1INIT blk_id=32

INIT blk_id=3

TRACE

TRACE

TRACE

CHECK

CHECK

TRACE

Qwork (CPU)

TRACE

TRACE

...

...

...

... ...

...

Qwork (GPU) Comm/

Sched

Thread

R
e

m
o

te
 P

ro
ce

sse
s

C0

Worker

Threads

(GPU)

C1G0

C2G1

Worker

Threads

(CPU)

C3 C4

C5 C6

C7 C8

C9 ...

enqueue()

Fig. 7. Thread model on single processes. The comm/sched thread
exchanges tasks with remote processes and schedules tasks on CPUs
and GPUs. The worker threads consume and produce tasks for SFM
estimate. The work queues and send queues buffer the pending tasks.

Algorithm 1 Worker thread loop. The process task() func-
tion processes an input task and returns a list of new tasks
to continue the computation.

while !all done do
if Qwork.pop(task) then

new tasks[] = process task(task)
for all task in new tasks[] do

comm.enqueue(task.blkID, task)
end for

end if
end while

if the current process owns the destination block; otherwise
the task is appended to the send queues.

Algorithm 2 simplifies the task routing by providing a
unified interface to enqueue tasks from both CPU/GPU
worker threads and the comm/sched thread. Tasks are
either routed to local work queues or remote processes.
The enqueue function also schedules tasks for CPU/GPU
coprocessing, which is detailed in Section 4.5.

102

101

100

10-1

1 2 4 8 16 32 63

max_size_CPU = 2048

max_size_CPU = 256

max_size_CPU = 64 (optimal)

max_size_CPU = 1

ideal scaling

Worker threads per process

Strong Scalability

T
im

e
 (

se
co

n
d

s)

optimal

32.0

31.1

1.3

0.8
0.9

Fig. 8. Benchmark of the flow map com-
putation in tornado simulation data (32K
particles) with different max_size_CPU and
different numbers of worker threads per pro-
cess on 32 Blue Gene/Q nodes. A proper
selection of max_size_CPU leads to better
performance and scalability.

The maximum
number of particles
for each task
(max_size_CPU),
which defines the
granularity of a
TRACE task, is the
most important
parameter that
determines the
scalability of
the thread pool.
Figure 8 shows
a scalability
benchmark
using different
max_size_CPU

values. The optimal
max_size_CPU,
which may differ
between datasets and hardware architectures, can be
determined by parameter sweeping on a number of
compute nodes. We found that 64 is the near optimal
selection in our experiments. A similar parameter

IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JULY 2018 8

Algorithm 2 Task enqueue function, which routes tasks to
different local and remote CPU/GPU processors.

function ENQUEUE(blkID, task)
i←blkID to rank(blkID)
if i=comm.rank then

if task.size≥max_size_GPU then
split tasks[]=task.split(max_size_GPU)
enqueue all(split tasks[])

else if task.size≥min_size_GPU then
Q(GPU)

work .push(task)
else if task.size≥max_size_CPU then

split tasks[]=task.split(max_size_CPU)
enqueue all(split tasks[])

else
Q(CPU)

work .push(task)
end if

else
Qi

send.push(task)
end if

end function

(max_size_GPU) needs to be configured when a GPU
is available for coprocessing with CPUs. The goal is to
set max_size_GPU to have approximately equivalent
processing time on GPUs as CPUs, so max_size_GPU

is usually larger than max_size_CPU. More details on
the parameter setting in CPU/GPU coprocessing are in
Section 4.5.

The comm/sched thread consumes tasks in the send
queues by sending them to the destination process and en-
queues to work queues tasks that are received from remote
processes. Our thread model uses a dedicated thread for
communication, a common practice in the implementation
of high-level task-parallel programing models. In addition,
our comm/sched thread schedules tasks for load balancing
and CPU/GPU coprocessing.

4.4 Asynchronous Communication

Algorithm 3 Comm/sched thread loop

while !all done do
for all i in comm.world do ⊲ outgoing tasks

if Qi
send.pop bulk(tasks, max_size_send) then

comm.isend(i, serialize(tasks))
end if

end for
while comm.iprobe() do ⊲ incoming tasks

tasks = unserialize(comm.recv())
for all task in tasks do

enqueue(task.blkID, task)
end for

end while
comm.iexchange(all done) ⊲ exchange status

end while

The comm/sched thread executes and manages non-
blocking MPI requests without any synchronization, in or-
der to fully overlap between computation and communi-
cation as illustrated in Figure 9. The pseudo code of the
comm/sched thread main loop is listed in Algorithm 3. Each
process maintains a list of lock-free send queues {Qi

send},
where i is the destination rank.

For m processes, we use m − 1 send queues, which
yield better performance than a single queue. In our design,

Running time
(a)

(b)

CPU1

CPU2

...
...

...

...

...

...

CPUn-3

CPUn-2

CPUn-1

GPU0

GPU1

CPU0 ...

Running time

CPU1

CPU2

...
...

...

...

CPUn-1

CPU0

Blk2 Blk2 Blk8 Blk3 Blk1

Blk6 Blk4 Blk3 Blk1 Blk5 Blk1Blk1

Blk2 Blk2 Blk7 Blk7 Blk3 Blk4

Blk0 Blk3 Blk2 Blk4 Blk6 Blk6

Blk8 Blk8 Blk0 Blk2 Blk1 Blk8 Blk2

Blk0

Blk1

Blk2

Blk(n-1)

Blk0

Blk1

Blk2

Blk(n-1)

Blk0

Blk1

Blk(n-1)

Blk1

Blk2

Blk(n-1)

...

COMM INIT TRACE RETURN CHECK

Fig. 9. Gantt chart of (a) our task model and (b) the bulk synchronous
parallel model. Each row represents a thread.

a set of tasks with the same destination rank is obtained
with the pop_bulk() function in the lock-free queue. Thus,
we can send a larger message that contains multiple tasks
to the same destination rank, instead of multiple smaller
messages each with a single task. We do so because a larger
message size usually leads to better bandwidth utilization
than smaller messages do. The loop exits when all tasks
across all processes are finished.

4.5 CPU/GPU Coprocessing

The thread pool model enables hybrid CPU/GPU par-
allelization, which fully utilizes the computation power
of both CPUs and GPUs in compute nodes. Our task-
scheduling strategy is to fill GPUs with larger tasks and
assign complex or small tasks for CPUs. We associate a GPU
worker thread (running on the CPU) with each GPU. The
data blocks in the main memory are copied into the GPU
in the initialization stage. A designated GPU task queue is
also set up for task scheduling. In the enqueue() function,
larger tasks and smaller tasks are pushed into the GPU and
CPU queues, respectively.

Similar to the rationale of max_size_CPU for CPU
workers, we also need to limit the task size for the GPU,
that is, min_size_GPU and max_size_GPU. We usually
set max_size_CPU ≤ min_size_GPU < max_size_GPU.

4.6 Implementation

We implemented the prototype system with C++11 and
CUDA. MPI is used for interprocess communication. For
each process, the worker threads are created with Pthreads,
and the main thread plays the role of the comm/sched
thread. We use a lock-free concurrent queue implemen-
tation2 to exchange tasks between threads. DIY2 [39] is
used for domain decomposition. The Block I/O Layer (BIL)
library [40] is used to efficiently load disjoint block data
across different files and processes collectively. After the
computation, we store the SFMs in a sparse matrix that is
managed by the PETSc library [41].

2. https://github.com/cameron314/concurrentqueue

IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JULY 2018 9

5 APPLICATION RESULTS

We applied our method to two weather simulation datasets:
uncertain Hurricane Isabel data and ensemble Weather Re-
search and Forecasting (WRF) data.

5.1 Input Data

Uncertainty arises in the Hurricane Isabel data from tem-
poral down-sampling. In climate and weather simulations,
a common practice is to dump average data hourly or
daily instead of every time step. Such data down-sampling
reduces the I/O cost but sacrifices accuracy. We follow Chen
et al. [42] who use quadratic Bezier curves to quantify
the uncertainty of the original Isabel data from the IEEE
Visualization Contest 2004. The down-sampled dataset we
used in the experiment keeps the full spatial resolution but
aggregates every 12 time steps into one. The parameters of
the quadratic Bezier curves and the Gaussian error are used
to reconstruct the uncertain flow field.

The uncertainty of the ensemble WRF data arises from
averaging the ensemble members. The input data, cour-
tesy of the National Weather Service, is simulated with
the High Resolution Rapid Refresh model [43]. The model
is based on the WRF model and assimilates observations
from National Oceanic and Atmospheric Administration
and other sources. The spatial resolution of the model is
1799 × 1059 × 40, and we use 10 ensemble members with
15 hourly averaged outputs. The uncertainty is modeled
as Gaussian—the mean and covarances of the ensemble
members are computed for every grid point location.

5.2 Uncertain Source-Destination Queries

Scientists can investigate and explore the uncertain trans-
port behaviors by queries. Figure 10(a) shows the uncertain
source-destination query results. We create particles along a
line in the domain and visualize the distributions of these
particles after every hour by volume rendering. The blue
line at the 0th hour indicates the distribution of the seeds,
which is deterministic. As the time evolves, we can see that
the uncertainties of SFMs grow throughout the advection.
In addition, the uncertain transport behaviors in different
regions are different.

5.3 Uncertain FTLE and LCS Visualization

FTLE and LCS are the most important tools for analyzing
deterministic unsteady flow. The FTLE was formalized for
time-varying flows by Haller [44], and it measures flow
convergence or divergence for the time interval of interest.
In our previous study [2], we generalized FTLE and LCS
to analyze uncertain unsteady flows based on SFMs. Three
new concepts were introduced: D-FTLE (distributions of
FTLE), FTLE-D (FTLE of distributions), and U-LCS (un-
certain LCS). We compute FTLE-D and U-LCS from the
uncertain Isabel data and the WRF ensembles in Figure 11
and Figure 10, respectively.

The FTLE-D and U-LCS in Figures 11(a) and (b) show
convective bands of the uncertain Isabel data. The spiral
arm that extends to the east coast separates two different
motions: the flow going upwards and the flow remaining
horizontal. In general, the U-LCS field characterizes the

probability of belonging to an LCS, or ridges of the FTLE
field, for each spatiotemporal location. Because there is more
uncertainty in updraft and downdraft flows, the boundary
of the two features is fuzzy, as shown in the volume render-
ing of U-LCS and the FTLE-D.

In the WRF ensembles, likewise, we can observe that the
upward and downward air flows lead to uncertainties in U-
LCS and FTLE-D. These are due mainly to the land surface
variability. We can see four distinct regions in Figures 10(b)
and 10(c): the on-shore flow from the Pacific Ocean to the
Cascade mountains (➀), a cold front from Oklahoma to the
Dakotas (➁), and two unstable troughs in the Midwest and
the East (➂ and ➃). The visualizations of FTLE-D and U-
LCS, which are confirmed by meteorologists, highlight these
unstable zones.

6 PERFORMANCE EVALUATION

We study the scalability of our method on two supercom-
puters: Mira and Titan. We also compare our parallel particle
tracing scheme with previous studies.

6.1 Scalability Study on the Blue Gene/Q Systems

We conducted a scalability study on Mira, an IBM Blue
Gene/Q system at Argonne National Laboratory. The the-
oretical peak performance of Mira is 10 petaflops. Each
compute node has 16 1.6 GHz PowerPC A2 cores, which
support 64 hardware threads in total. The memory on each
node is 16 GB, and the interconnect is a 5D torus network.

We ran one MPI process on each node, with one
comm/sched thread and 63 worker threads for computa-
tion. These choices are based on the experiments in Sec-
tion 4.3. We limited the memory for data blocks to 1 GB per
process. For the uncertain Isabel data, we used both fixed
numbers of Monte Carlo runs and adaptive refinements for
comparison. For the fixed sampling, the number of runs is
256; thus, the total number of particles is about 6.5 billion.

Figures 12(a) and 12(c) show the timings of SFM compu-
tation on both datasets with different numbers of processes
on Mira. Ideal scaling curves based on linear speedup are
shown for reference. From the benchmark we can see that
the strong scaling speedup is nearly linear. The parallel
efficiency of 4K, 8K, and 16K processes is 92%, 85%, and
72%, respectively.

6.2 Scalability Study on CPU/GPU Hybrid Architectures

We benchmarked the CPU/GPU coprocessing on Titan,
which is a Cray XK7 supercomputer at Oak Ridge National
Laboratory. Titan has 18,688 compute nodes, each equipped
with an AMD Opteron 16-core CPU that operates at 2.2 GHz
with 32 GB of memory. In addition to the CPU, each node
contains an NVIDIA K20X GPU with 6 GB memory. The
number of CUDA cores on a single GPU is 2,688, running
at 732 MHz. We use up to 8,192 compute nodes in our
experiments.

Figure 12(b) shows the strong scalability benchmark on
the uncertain Isabel dataset. The problem size is the same
as that on Mira, 6.5 billion particles. In the experiments, we
fully used the CPU resources by running 15 worker threads
and one comm/sched thread per process on each node.

IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JULY 2018 10

(b) (c)

0h

6h

10h

4h

8h

(a)

0h 4h

1
2

3

4

Fig. 10. Experiment results of the WRF ensemble simulation data: (a) uncertain source-destination queries; (b) uncertain LCSs; (c) FTLE-D.

(a) (b)

Fig. 11. Volume rendering of (a) uncertain LCSs and (b) FTLE-D of the
uncertain Isabel data.

In the CPU/GPU coprocessing mode, one of the worker
threads managed the GPU. We conducted three runs to
study the effectiveness of CPU/GPU hybrid parallelization:
pure CPU mode, pure GPU mode, and hybrid mode.

Results show that the computation time of the hybrid
mode is about 2.5× faster than with the pure CPU mode. For
reference, Camp et al. [35] report a speedup of 1× to 10.5×
on a distributed-memory GPU particle tracer compared
with a CPU-only code on 8 nodes. Based on this study and
other previous studies, we believe that our 2.5× speedup
is promising. Our hybrid parallelization design enables the
full use of available hardware resources on compute nodes,
including all CPU and GPU cores. The scheduling of CPUs
and GPUs is also adaptive, capable of balancing working
time between CPU and GPU workers. Moreover, the hybrid
implementation is scalable up to 131,072 Opteron cores with
8,192 NVIDIA K20 GPUs in our test. At this scale, tracing
billions of particles takes less than 10 seconds.

6.3 Discussion

Our approach reduces network bandwidth utilization for
high scalability. Because of the decoupled SFM estimate,
we only need to handle small subintervals as the work-
ing dataset for each run. Because of the process grouping
in the software design, the small working dataset can be
replicated over different groups for independent process-
ing. All communications happen within each group; there
is no intergroup communication, thus avoiding scalability
bottlenecks.

We compared our task-parallelism particle tracing with
existing algorithms. The baseline approaches are those of
Peterka et al. [45] and Camp et al. [34]. Both algorithms

partition data into blocks for parallel processing and use
MPI/thread hybrid parallelization. We implemented these
algorithms and compared their performance on the same
dataset and problem size. In the experiment, we used the
deterministic tornado dataset and 32 threads per process
for computation. Notice that our task parallel scheme not
only works for stochastic particle tracing, but also capa-
ble of accelerating deterministic particle tracing and FTLE
computation as well. The timings with respect to different
numbers processes are shown in Figure 13. We can see that
our method outperforms the others.

ideal scaling

102

101

100

10-1

103

Processes

Strong scalability

T
im

e
 (

se
co

n
d

s)

max_size_CPU = 64 (our method)

Bulk synchronous (Peterka et al.)

max_size_CPU = 1 (Camp et al., simulated)

261.9

189.5

195.1

24.0

1.5

1.0

1 2 4 8 16 32 64 128 256

Fig. 13. Performance comparison with two
parallel particle tracing methods [34], [45]

The parallel
model used by
Peterka et al. [45] is
bulk synchronous
(Figure 9(b)). In this
model, each block
of data is associated
with a thread in
single process. The
particles are traced
in the current block
until they cross
the block bounds,
and then they are
exchanged between
neighbor blocks
collectively. Compared with the bulk synchronous parallel
model, our model does not associate blocks with threads.
We also fully overlap the communication and computation
in our framework.

The thread pool pattern is used by Camp et al. [34],
but the major differences in our design are the task model
and the software design. Their task granularity is limited
to a single particle instead of a packet of particles as in
our method. Therefore, in Figure 13 we simulate their
method with the max_CPU_size of 1 (for one particle)
and compare the performance with our method with larger
max_CPU_sizes.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a scalable SFM estimate method
for uncertain flow visualization and analysis. The keys to
achieving high scalability are the decoupled and adaptive
algorithms, the MPI/thread hybrid parallelization, and the
unique task design that assembles packets of particles.
The decoupling allows us to estimate SFMs of adjacent

IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JULY 2018 1

mira_�xed

mira_adaptive

ideal scaling

102

101

100

103

Processes

T
im

e
 (

se
co

n
d

s)
Strong Scalability

485.8

744.5

10.8

92%

85%

72%

8.1

64 128 256 512 1K 2K 4K 8K 16K

titan_�xed_hybrid

titan_�xed_cpu_only

titan_�xed_gpu_only

titan_adaptive_hybrid

ideal scaling

102

101

100

103

T
im

e
 (

se
co

n
d

s)

Processes

Strong Scalability
816.4

612.4
250.6

184.7

8.3

19.8

3.1

1.9

64 128 256 512 1K 2K 4K 8K 256 512 1K

mira_�xed

ideal scaling

103

102

104

T
im

e
 (

se
co

n
d

s)

Processes

Strong Scalability

273.3

1020.0

(a) (b) (c)

Fig. 12. Strong scalability studies of our method: (a) uncertain Isabel data on Mira; (b) uncertain Isabel data on Titan; (c) ensemble WRF data on
Mira.

time steps and then compose them together. The number
of stochastic runs can be adaptively configured for better
efficiency and precision. We parallelize over tasks, which
are packets of particles, to achieve high efficiencies in the
MPI/thread hybrid programming. Our parallelization de-
sign also enables CPU/GPU coprocessing when GPUs are
available. Results show that our method can help scientists
analyze uncertain flows with higher performance than pre-
viously possible.

In future, we would like to use our approach to acceler-
ate more flow analyses in uncertain unsteady flows. We are
going to further derive the estimate error of our adaptive
refinement as well. We would also like to further reduce the
computational cost for the SFM estimate on resource-limited
platforms, which are more accessible to users.

APPENDIX

We review the rationale of the decoupled SFM estimate and
then evaluate its error in this Appendix.

Definitions, Lemmas, and Assumptions

Based on the approximation in Eq. (8), we define the ab-
solute error matrix of the decoupled SFM estimate as a
function

Em(t0, t1, . . . , tm)
def
= abs

(

Ptm
t0

−Pt1
t0
Pt2

t1
· · ·Ptm

tm−1

)

, (9)

where t0, t1, . . . , tm represent m (m ≤ 2) consecutive
time spans (t0, t1), (t1, t2), . . . , (tm−1, tm); abs(·) is a matrix
whose elements are the absolute values of the corresponding
elements in the input matrix. The dimensionality of Em

is nc × nc, where nc is the number of cells in the mesh
discretization. Em(t0, t1, . . . , tm; i0, im)—the element at the
i0 row and im column of Em—denotes the absolute error
bound of decoupled SFM estimate of p(0,m, i0, im).

We define a matrix A less than or equal to another matrix
B and write A � B, if A and B are of the exact same
dimension, and Aij ≤ Bij for all i and j.

Lemma 1. abs(AB) � Aabs(B) if B is non-negative.

Proof. The lemma holds because |∑k aikbkj | ≤
∑

k |aikbkj | =
∑

k |aik| bkj .

Assumption 1. The transition probability density function ρ is
Lipschitz continuous.3

The rationale is based on our observation that proba-
bility densities of SFMs are smooth. In our derivation, we
assume there exists a positive real constant L such that for
any starting locations x1 and x2, we have

|ρ(t0, t1,x1,y)− ρ(t0, t1,x2,y)| ≤ L ‖x1 − x2‖ , (10)

where t0, t1, and y are the given start time, end time, and
end location, respectively; || · || is the Euclidean norm in R

n.
The Lipschitz constant L, which is directly related to the

error bound in our further derivations, characterizes how
fast ρ can change with respect to the starting location x.
For example, if ρ is continuously differentiable, L is the
supremum of the derivative:

L = sup

∥

∥

∥

∥

∂ρ(t0, t1,x,y)

∂x

∥

∥

∥

∥

. (11)

To have an intuition of how large L may be, we compute the
derivative of ρ in the synthetic uncertain double gyre case
in Figure 5(b), which is estimated using a large number of
particles as the ground truth for error evaluation. We use the
central difference method to estimate the gradient of ρ with
respect to starting location x, and then compute the gradient
magnitude with the 2-norm. As a result, the value of L—the
supremum of gradient magnitude—is 14.86 in this case.

Rationale of the decoupled SFM estimate

We first review the rationale of Eq. (6), which is based on
the Chapman-Kolmogorov equation:

p(t0, t2, i, k)
(3)
=

∫

Ck

ρ(t0, t2, C̄i, z)dz

=

∫

Ck

∫

D

ρ(t0, t1, C̄i,y)ρ(t1, t2,y, z)dydz, (y ∈ D, z ∈ Ck)

(12)

where D is the data domain (union of all cells in the mesh).
We can further transform the integral by decomposing D
into individual cells:

3. If we weaken the assumption to only assume ρ is continuous, we
can still approximate the bounded error. See footnote 5 for more details.

IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JULY 2018 2

∫

Ck

∫

D

ρ(t0, t1, C̄i,y)ρ(t1, t2,y, z)dydz

=
∑

j

∫

Ck

∫

Cj

ρ(t0, t1, C̄i,y)ρ(t1, t2,y, z)dydz. (y ∈ Cj)

(13)

Based on the first mean value theorem for definite inte-
grals,4for each cell Cj , there exists a point ξj ∈ Cj such
that

∑

j

∫

Ck

(

∫

Cj

ρ(t0, t1, C̄i,y)ρ(t1, t2,y, z)dy

)

dz

=
∑

j

∫

Ck

(

ρ(t1, t2, ξj , z)

∫

Cj

ρ(t0, t1, C̄i,y)dy

)

dz. (14)

The above equation can be simplified:

∑

j

∫

Ck

ρ(t1, t2, ξj , z)

∫

Cj

ρ(t0, t1, C̄i,y)dydz

(3)
=
∑

j

∫

Ck

ρ(t1, t2, ξj ; z)p(t0, t1, i, j)dz

=
∑

j

p(t0, t1, i, j)

∫

Ck

ρ(t1, t2, ξj , z)dz. (15)

Because ξj and C̄j are in the same cell, the two points are
very close. We thus approximate the above equation by

∑

j

p(t0, t1, i, j)

∫

Ck

ρ(t1, t2, ξj , z)dz (16)

≈
∑

j

p(t0, t1, i, j)

∫

Ck

ρ(t1, t2, C̄j , z)dz (17)

(3)
=
∑

j

p(t0, t1, i, j)p(t1, t2, j, k). (18)

The outcome of Eq. (18) above is the same as Eq. (6) in
Section 3 of the paper. We further derive the bounded error
of this approximation in the following.

Error of Coupling Two Consecutive Time Spans

Based on the above definition, the absolute error of coupling
two consecutive time spans is:

E(t0, t1, t2; i, k)

(9)
=

∣

∣

∣

∣

∣

∣

p(t0, t2, i, k)−
∑

j

p(t0, t1, i, j)p(t1, t2, j, k)

∣

∣

∣

∣

∣

∣

(16)
=

(17)

∣

∣

∣

∣

∣

∣

∑

j

p(t0, t1, i, j)

∫

Ck

ρ(t1, t2, ξj , z)dz

−
∑

j

p(t0, t1, i, j)

∫

Ck

ρ(t1, t2, C̄j , z)dz

∣

∣

∣

∣

∣

∣

4. If f is continuous and g is integrable and does not change sign
in a closed domain R, there exists ξ ∈ R such that

∫

R
f(x)g(x)dx =

f(ξ)
∫

R
g(x)dx.

=
∑

j

p(t0, t1, i, j)

∣

∣

∣

∣

∫

Ck

ρ(t1, t2, ξj , z)− ρ(t1, t2, C̄j , z)dz

∣

∣

∣

∣

.

(19)

Because the absolute value of a definite integral of a function
is less than or equal to the definite integral of the absolute
value of a function, we have

∣

∣

∣

∣

∫

Ck

ρ(t1, t2, ξj , z)− ρ(t1, t2, C̄j , z)dz

∣

∣

∣

∣

≤
∫

Ck

∣

∣ρ(t1, t2, ξj , z)− ρ(t1, t2, C̄j , z)
∣

∣ dz. (20)

Based on our Lipschitz continuous assumption5 in Eq. (10),
Eq. (20) can be bounded by

∫

Ck

∣

∣ρ(t1, t2, ξj , z)− ρ(t1, t2, C̄j , z)
∣

∣ dz

≤
∫

Ck

L||ξj − C̄j ||dz. (21)

Because ξj and C̄j are in the same cell Cj , the distance must
be less than or equal to

√
nδ, with δ the maximum cell size

in any dimension. We then have

∫

Ck

L||ξj − C̄j ||dz ≤
∫

Ck

L · δdz =
√
nLδV (Ck), (22)

where V (Ck)—the volume of cell Ck—is bounded by
O(δn). Thus, the error in Eq (19) is hereby bounded by

E(t0, t1, t2; i, k) ≤
∑

j

p(t0, t1, i, j)
√
nLδV (Ck), (23)

which will be eventually bounded by O(Lδn+1) in the
next section. We introduce a non-negative matrix Θ, whose
element at jth row and kth colum is θj,k =

√
nLδV (Ck),

thus the above equation can be written in the matrix form:

E2(t0, t1, t2) 4 Pt1
t0
Θ (24)

for any given t0, t1, and t2.

Error of Coupling More Consecutive Time Spans

We next derive the bounded approximation error of cou-
pling three consecutive time spans. We use the triangle
inequality by arbitrarily inserting Pt1

t0
Pt2

t1
· · ·Ptm

tm−2
into the

equation:

Em(t0, t1, . . . , tm)
(9)
= abs(Ptm

t0
−Pt1

t0
Pt2

t1
· · ·Ptm

tm−1
)

4abs(Ptm
t0

−Pt1
t0
Pt2

t1
· · ·Ptm

tm−2
)

+ abs(Pt1
t0
Pt2

t1
· · ·Ptm

tm−2
−Pt1

t0
Pt2

t1
· · ·Ptm

tm−1
), (25)

where the first component abs(Ptm
t0

− Pt1
t0
Pt2

t1
· · ·Ptm

tm−2
) is

Em−1(t0, t1, . . . , tm−2, tm) by definition. The second com-
ponent can be further bounded based on associativity of
matrix product, non-negative of P matrices, and Lemma 1:

5. If Lipschitz continuity is not satisfied, we can still
get similar results. Because the range of a PDF is [0, 1],
∫

Ck

∣

∣ρ(t1, t2, ξj , z)− ρ(t1, t2, C̄j , z)
∣

∣ dz ≤
∫

Ck
1dz. The error of

coupling two time spans will be bounded by O(δn) in this case.

IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JULY 2018 3

abs
(

Pt1
t0
Pt2

t1
· · ·Ptm

tm−2
−Pt1

t0
Pt2

t1
· · ·Ptm

tm−1

)

4Pt1
t0
Pt2

t1
· · ·Ptm−2

tm−3
abs(Ptm

tm−2
−P

tm−1

tm−2
Ptm

tm−1
)

(9)
=Pt1

t0
Pt2

t1
· · ·Ptm−2

tm−3
E2(tm−2, tm−1, tm)

(24)

4Pt1
t0
Pt2

t1
· · ·Ptm−2

tm−3
P

tm−1

tm−2
Θ. (26)

We further bound the above equation with the triangle

inequality by arbitrarily inserting P
tm−1

t0
:

Pt1
t0
Pt2

t1
· · ·Ptm−1

tm−2
Θ

4

(

abs(Pt1
t0
Pt2

t1
· · ·Ptm−1

tm−2
−P

tm−1

t0
) + abs(P

tm−1

t0
)
)

Θ

(9)
=Em−1(t0, t1, . . . , tm−1)Θ+P

tm−1

t0
Θ (27)

By combining the two components, Eq. (25) can be written
as a recursive form:

Em(t0, t1, . . . , tm)

4Em−1(t0, t1, . . . , tm−2, tm) +P
tm−1

t0
Θ

+Em−1(t0, t1, . . . , tm−1)Θ. (28)

We use mathematical induction to derive the non-
recursive form of the above equation:

E3(t0, t1, t2, t3)
(28)

4E2(t0, t1, t3) +Pt2
t0
Θ+E2(t0, t1, t2)Θ

(24)

4 (Pt1
t0
+Pt2

t0
)Θ+Pt1

t0
Θ2 (29)

for any given t0, t1, t2, and t3. Likewise, for four time spans,

E4(t0, t1, t2, t3, t4)
(28)

4E3(t0, t1, t2, t4) +Pt3
t0
Θ+E3(t0, t1, t2, t3)Θ

(29)

4
(

Pt1
t0
Θ+Pt2

t0
Θ
)

+Pt3
t0
Θ

+
(

Pt1
t0
Θ+Pt2

t0
Θ+Pt1

t0
Θ2
)

Θ

4(Pt1
t0
+Pt2

t0
+Pt3

t0
)Θ+ (Pt1

t0
+Pt2

t0
)Θ2 +Pt1

t0
Θ3. (30)

We can further recursively bound E for arbitrary m (m ≥ 2)

Em(t0, t1, . . . , tm) 4
m−1
∑

r=1

m−r
∑

q=1

P
tq
t0
Θr. (31)

For individual elements in Em, we can bound the error by
safely dropping all higher order infinitesimals of Θ:

Em(t0, t1, . . . , tm; i, j)

(31)

≤
m−1
∑

q=1

∑

j

p(t0, tq, i, j)
√
nLδV (Cj)

≤
√
nLδmax

j
{V (Cj)}

m−1
∑

q=1

∑

j

p(t0, tq, i, j)

=
√
nLδmax

j
{V (Cj)}

m−1
∑

q=1

1

≤
√
nLδ(m− 2)δn = O(mLδn+1). (32)

Overall, the absolute error of decoupled SFM estimate
is no larger than O(mLδn+1), which is related to the maxi-
mum cell size in any dimension δ, number of time steps that
are coupled for SFM estimate m, and the Lipschitz constant
L that characterizes how fast SFMs can change. We can also
evaluate the bound of RMSE:

RMSE =

√

∑

i

∑

j Em(t0, t1, . . . , tm; i, j)2

n2
c

≤ O(mLδn+1).

(33)

Figures 6 and 14 serve as an empirical error study with
respect to δ and m. We can see that fewer coupled time
spans (smaller m) and finer discretization (smaller δ) leads
to more precise results.

RMSE (10-3)

0.5

1.0

1.5

2.0

0.0

2 4 8 16

PSNR (dB)

45

55

65

75

2 4 8 16

Fig. 14. RMSE and PSNR values of decoupled SFM estimate with
respect to different δ and m in the synthetic uncertain double gyre data.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Hong Zhang and
Dr. Julie Bessac for useful discussions. Dr. Chunhui Liu is
supported by JSPS KAKENHI Grant Number JP17F17730.
This material is based upon work supported by the U.S.
Department of Energy, Office of Science, under contract
number DE-AC02-06CH11357. This work is also supported
by the U.S. Department of Energy, Office of Advanced Scien-
tific Computing Research, Scientific Discovery through Ad-
vanced Computing (SciDAC) program. This research used
resources of the Argonne Leadership Computing Facility,
which is a DOE Office of Science User Facility supported
under Contract DE-AC02-06CH11357. This research also
used resources of the Oak Ridge Leadership Computing
Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC05-00OR22725.

REFERENCES

[1] M. Otto, T. Germer, and H. Theisel, “Closed stream lines in
uncertain vector fields,” in SCCG’11: Proceedings of the 27th Spring
Conference on Computer Graphics, 2013, pp. 87–94.

[2] H. Guo, W. He, T. Peterka, H.-W. Shen, S. M. Collis, and J. J. Hel-
mus, “Finite-time Lyapunov exponents and Lagrangian coherent
structures in uncertain unsteady flows,” IEEE Trans. Vis. Comput.
Graph., vol. 22, no. 6, pp. 1672–1682, 2016.

[3] D. Schneider, J. Fuhrmann, W. Reich, and G. Scheuermann, “A
variance based FTLE-like method for unsteady uncertain vector
fields,” in Topological Methods in Data Analysis and Visualization II,
ser. Mathematics and Visualization, R. Peikert, H. Hauser, H. Carr,
and R. Fuchs, Eds. Springer, 2011, pp. 255–268.

IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JULY 2018 4

[4] M. Otto, T. Germer, H.-C. Hege, and H. Theisel, “Uncertain 2D
vector field topology,” Comput. Graph. Forum, vol. 29, no. 2, pp.
347–356, 2010.

[5] M. Otto, T. Germer, and H. Theisel, “Uncertain topology of 3D
vector fields,” in Proceedings of IEEE Pacific Visualization Symposium
2011, 2011, pp. 67–74.

[6] M. Otto and H. Theisel, “Vortex analysis in uncertain vector
fields,” Comput. Graph. Forum, vol. 31, no. 3, pp. 1035–1044, 2012.

[7] B. Nouanesengsy, T.-Y. Lee, K. Lu, H.-W. Shen, and T. Peterka,
“Parallel particle advection and FTLE computation for time-
varying flow fields,” in SC’12: Proceedings of ACM/IEEE Conference
on Supercomputing, 2012, pp. 61:1–61:11.

[8] W. Kendall, J. Wang, M. Allen, T. Peterka, J. Huang, and D. Erick-
son, “Simplified parallel domain traversal,” in SC’11: Proceedings of
the ACM/IEEE Conference on Supercomputing, 2011, pp. 10:1–10:11.

[9] B. Øksendal, Stochastic Differential Equations. Springer-Verlag
Berlin Heidelberg, 2014.

[10] F. Sadlo and R. Peikert, “Efficient visualization of Lagrangian
coherent structures by filtered AMR ridge extraction,” IEEE Trans.
Vis. Comput. Graph., vol. 13, no. 6, pp. 1456–1463, 2007.

[11] S. S. Barakat and X. Tricoche, “Adaptive refinement of the flow
map using sparse samples,” IEEE Trans. Vis. Comput. Graph.,
vol. 19, no. 12, pp. 2753–2762, 2013.

[12] M. Hlawatsch, F. Sadlo, and D. Weiskopf, “Hierarchical line inte-
gration,” IEEE Trans. Vis. Comput. Graph., vol. 17, no. 8, pp. 1148–
1163, 2011.

[13] C. R. Johnson and A. R. Sanderson, “A next step: Visualizing errors
and uncertainty,” IEEE Comput. Graph. Appl., vol. 23, no. 5, pp. 6–
10, 2003.

[14] K. Brodlie, R. A. Osorio, and A. Lopes, “A review of uncertainty
in data visualization,” in Expanding the Frontiers of Visual Analytics
and Visualization, J. Dill, R. Earnshaw, D. Kasik, J. Vince, and P. C.
Wong, Eds. Springer London, 2012, pp. 81–109.

[15] R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and
D. Weiskopf, “The state of the art in flow visualization: Dense and
texture-based techniques,” Comput. Graph. Forum, vol. 23, no. 2,
pp. 203–222, 2004.

[16] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch,
“The state of the art in flow visualization: Feature extraction and
tracking,” Comput. Graph. Forum, vol. 22, no. 4, pp. 1–17, 2003.

[17] A. Pobitzer, R. Peikert, R. Fuchs, B. Schindler, A. Kuhn, H. Theisel,
K. Matkovic, and H. Hauser, “The state of the art in topology-
based visualization of unsteady flow,” Comput. Graph. Forum,
vol. 30, no. 6, pp. 1789–1811, 2011.

[18] C. M. Wittenbrink, A. Pang, and S. K. Lodha, “Glyphs for visual-
izing uncertainty in vector fields,” IEEE Trans. Vis. Comput. Graph.,
vol. 2, no. 3, pp. 266–279, 1996.

[19] R. P. Botchen, D. Weiskopf, and T. Ertl, “Texture-based visu-
alization of uncertainty in flow fields,” in Proceedings of IEEE
Visualization 2005, 2005, pp. 647–654.

[20] H. Guo, X. Yuan, J. Huang, and X. Zhu, “Coupled ensemble
flow line advection and analysis,” IEEE Trans. Vis. Comput. Graph.,
vol. 19, no. 12, pp. 2733–2742, 2013.

[21] T. Höllt, M. Hadwiger, O. Knio, and I. Hoteit, “Probability
Maps for the Visualization of Assimilation Ensemble Flow Data,”
in Workshop on Visualisation in Environmental Sciences (EnvirVis),
A. Middel, K. Rink, and G. H. Weber, Eds. The Eurographics
Association, 2015.

[22] R. T. Whitaker, M. Mirzargar, and R. M. Kirby, “Contour boxplots:
A method for characterizing uncertainty in feature sets from
simulation ensembles,” IEEE Trans. Vis. Comput. Graph., vol. 19,
no. 12, pp. 2713–2722, 2013.

[23] E. W. Bethel, H. Childs, and C. Hansen, High Performance Visual-
ization: Enabling Extreme-Scale Scientific Insight. CRC Press, 2012.

[24] T. Peterka, R. B. Ross, B. Nouanesengsy, T.-Y. Lee, H.-W. Shen,
W. Kendall, and J. Huang, “A study of parallel particle tracing
for steady-state and time-varying flow fields,” in IPDPS’11: Pro-
ceedings of IEEE International Symposium on Parallel and Distributed
Processing, 2011, pp. 580–591.

[25] B. Nouanesengsy, T.-Y. Lee, and H.-W. Shen, “Load-balanced
parallel streamline generation on large scale vector fields,” IEEE
Trans. Vis. Comput. Graph., vol. 17, no. 12, pp. 1785–1794, 2011.

[26] H. Yu, C. Wang, and K.-L. Ma, “Parallel hierarchical visualization
of large time-varying 3D vector fields,” in SC’07: Proceedings of the
ACM/IEEE Conference on Supercomputing, 2007, pp. 24:1–24:12.

[27] L. Chen and I. Fujishiro, “Optimizing parallel performance of
streamline visualization for large distributed flow datasets,” in

Proceedings of IEEE Pacific Visualization Symposium 2008, 2008, pp.
87–94.

[28] D. Pugmire, H. Childs, C. Garth, S. Ahern, and G. H. Weber,
“Scalable computation of streamlines on very large datasets,” in
SC’09: Proceedings of the ACM/IEEE Conference on Supercomputing,
2009, pp. 16:1–16:12.

[29] H. Guo, J. Zhang, R. Liu, L. Liu, X. Yuan, J. Huang, X. Meng, and
J. Pan, “Advection-based sparse data management for visualizing
unsteady flow,” IEEE Trans. Vis. Comput. Graph., vol. 20, no. 12, pp.
2555–2564, 2014.

[30] D. Camp, C. Garth, H. Childs, D. Pugmire, and K. I. Joy, “Parallel
stream surface computation for large data sets,” in LDAV’12: Pro-
ceedings of IEEE Symposium on Large Data Analysis and Visualization,
2012, pp. 39–47.

[31] K. Lu, H. Shen, and T. Peterka, “Scalable computation of stream
surfaces on large scale vector fields,” in SC’14: Proceedings of the
ACM/IEEE Conference on Supercomputing, 2014, pp. 1008–1019.

[32] C. Mueller, D. Camp, B. Hentschel, and C. Garth, “Distributed
parallel particle advection using work requesting,” in LDAV’13:
Proceedings of IEEE Symposium on Large Data Analysis and Visualiza-
tion, 2013, pp. 109–112.

[33] J. Zhang, H. Guo, F. Hong, X. Yuan, and T. Peterka, “Dynamic
load balancing based on constrained k-d tree decomposition for
parallel particle tracing,” IEEE Trans. Vis. Comput. Graph., vol. 1,
pp. 954–963, 2018.

[34] D. Camp, C. Garth, H. Childs, D. Pugmire, and K. I. Joy, “Stream-
line integration using MPI-hybrid parallelism on a large multicore
architecture,” IEEE Trans. Vis. Comput. Graph., vol. 17, no. 11, pp.
1702–1713, 2011.

[35] D. Camp, H. Krishnan, D. Pugmire, C. Garth, I. Johnson, E. W.
Bethel, K. I. Joy, and H. Childs, “GPU acceleration of particle
advection workloads in a parallel, distributed memory setting,”
in EGPGV’13: Proceedings of Eurographics Parallel Graphics and Visu-
alization Symposium, 2013, pp. 1–8.

[36] T. Günther, A. Kuhn, and H. Theisel, “MCFTLE: monte carlo ren-
dering of finite-time Lyapunov exponent fields,” Comput. Graph.
Forum, vol. 35, no. 3, pp. 381–390, 2016.

[37] C. Birdsall and D. Fuss, “Cloud-in-cell computer experiments in
two and three dimensions,” California Univ., Livermore. Lawrence
Radiation Lab., Tech. Rep., 1969.

[38] N. Hofmann, T. Mueller-Gronbach, and K. Ritter, “The optimal
discretization of stochastic differential equations,” Journal of Com-
plexity, vol. 17, no. 1, pp. 117–153, 2001.

[39] D. Morozov and T. Peterka, “Block-parallel data analysis with
DIY2,” in LDAV’16: Proceedings of IEEE Symposium on Large Data
Analysis and Visualization, 2016, pp. 29–36.

[40] W. Kendall, J. Huang, T. Peterka, R. Latham, and R. B. Ross, “To-
ward a general I/O layer for parallel-visualization applications,”
IEEE Computer Graphics and Applications, vol. 31, no. 6, pp. 6–10,
2011.

[41] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient
management of parallelism in object oriented numerical software
libraries,” in Modern Software Tools in Scientific Computing, E. Arge,
A. M. Bruaset, and H. P. Langtangen, Eds. Birkhäuser Press, 1997,
pp. 163–202.

[42] C.-M. Chen, A. Biswas, and H.-W. Shen, “Uncertainty modeling
and error reduction for pathline computation in time-varying flow
fields,” in Proceedings of IEEE Pacific Visualization Symposium 2015,
2015, pp. 215–222.

[43] C. Alexander, D. C. Dowell, S. S. Weygandt, S. G. Benjamin, M. Hu,
T. G. Smirnova, J. B. Olson, J. M. Brown, E. P. James, and P. Hof-
mann, “The high-resolution rapid refresh: Recent model and data
assimilation development towards an operational implementation
in 2014,” in Proceedings of 26th Conference on Weather Analysis
and Forecasting / 22nd Conference on Numerical Weather Prediction.
American Meterological Society, 2014.

[44] G. Haller, “Distinguished material surfaces and coherent struc-
tures in three-dimensional fluid flows,” Physica D: Nonlinear Phe-
nomena, vol. 149, no. 4, pp. 248–277, 2001.

[45] T. Peterka, R. B. Ross, W. Kendall, A. Gyulassy, V. Pascucci, H.-
W. Shen, T.-Y. Lee, and A. Chaudhuri, “Scalable parallel building
blocks for custom data analysis,” in LDAV’11: Proceedings of IEEE
Symposium on Large Data Analysis and Visualization, 2011, pp. 105–
112.

IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, JULY 2018 5

Hanqi Guo is an assistant computer scientist
in the Mathematics and Computer Science Divi-
sion, Argonne National Laboratory. He received
his Ph.D. degree in computer science from
Peking University in 2014, and the B.S. degree in
mathematics and applied mathematics from Bei-
jing University of Posts and Telecommunications
in 2009. His research interests are mainly in
flow visualization, uncertainty visualization, and
large-scale scientific data visualization.

Wenbin He is a Ph.D. student in computer sci-
ence and engineering at the Ohio State Uni-
versity. He received his B.S. degree from the
Department of Software Engineering at Beijing
Institute of Technology in 2012. His research
interests include analysis and visualization of
large-scale scientific data, uncertainty visualiza-
tion, and flow visualization.

Sangmin Seo is a software engineer at
Ground X, where he develops a next-
generation blockchain platform focusing on
high-performance, scalability, and service-
friendliness. He received the B.S. degree
in computer science and engineering and
the Ph.D. degree in electrical engineering
and computer science from Seoul National
University, respectively. After obtaining his Ph.D.
degree, he worked as a CEO at ManyCoreSoft
Co., Ltd and then joined Argonne National

Laboratory where he conducted research on threading models and
their interaction with communication runtimes. After that, he moved to
Samsung Research and developed a compiler and runtime system
specialized for handling neural network models targeting on-device AI.
His research interests include high-performance computing, parallel
programming models, compilers, runtime systems, artificial intelligence,
and blockchains.

Han-Wei Shen is a full professor at the Ohio
State University. He received his B.S. degree
from Department of Computer Science and In-
formation Engineering at National Taiwan Uni-
versity in 1988, the M.S. degree in computer
science from the State University of New York
at Stony Brook in 1992, and the Ph.D. degree
in computer science from the University of Utah
in 1998. From 1996 to 1999, he was a research
scientist at NASA Ames Research Center in
Mountain View California. His primary research

interests are scientific visualization and computer graphics. He is a
winner of the National Science Foundation’s CAREER award and U.S.
Department of Energy’s Early Career Principal Investigator Award. He
also won the Outstanding Teaching award twice in the Department of
Computer Science and Engineering at the Ohio State University.

Emil Mihai Constantinescu is a Computational
Mathematician with the Mathematics and Com-
puter Science Division, Argonne National Labo-
ratory. He received his Ph.D. degree in computer
science from Virginia Tech, Blacksburg, in 2008.
His research interests include numerical anal-
ysis of time-stepping and stochastic algorithms
and their applications to dynamical systems and
high performance computing.

Chunhui Liu is a JSPS international research
fellow working in Department of Mathematics,
Faculty of Science, Kyoto University. He gets his
Ph. D. degree in mathematics from Université
Paris Diderot - Paris 7, France.

Tom Peterka is a computer scientist at Argonne
National Laboratory, fellow at the Computation
Institute of the University of Chicago, adjunct
assistant professor at the University of Illinois
at Chicago, and fellow at the Northwestern Ar-
gonne Institute for Science and Engineering. His
research interests are in large-scale parallelism
for in situ analysis of scientific data. His work has
led to three best paper awards and publications
in ACM SIGGRAPH, IEEE VR, IEEE TVCG,
and ACM/IEEE SC, among others. Peterka re-

ceived his Ph.D. in computer science from the University of Illinois at
Chicago, and he currently works actively in several DOE- and NSF-
funded projects.

